【題目】已知點P(2,1)與Q關(guān)于原點O對稱,直線PM,QM相交于點M,且它們的斜率之積是﹣ (Ⅰ)求點M的軌跡C的方程;
(Ⅱ)過P作直線l交軌跡C于另一點A,求DPAO的面積的取值范圍.
【答案】解:(Ⅰ)設(shè)點M(x,y),…(1分) 因為點P(2,1)與Q關(guān)于原點O對稱,所以Q(﹣2,﹣1),
因此,直線PM,QM的斜率之積是 =﹣ ,
化簡,得 =1(x≠±2),
所以點M的軌跡C的方程為 =1(x≠±2).
(Ⅱ)當直線PA的斜率不存在時,則直線PA的方程為x=2,
則點A的坐標為A(2,﹣1),S△AOP= =2.
當直線PA的斜率存在時,設(shè)斜率為k,則直線PA的方程為y﹣1=k(x﹣2),
設(shè)設(shè)A(x1 , y1),B(x2 , y2),
由直線與橢圓,消去y得(4k2+1)x2﹣(16k2﹣8k)x+16k2﹣16k﹣4=0,
由已知△=16(2k+1)2>0,所以k ,由題意,x1=2﹣ ,
則y1=﹣ +1,
|PA|= =
而原點O到直線l的距離為d= ,
所以S△AOP= =2|1﹣ |
因為k ,所以0<|1﹣ |<1,從而0<S△AOP<2綜上可知,0<S△AOP≤2.
【解析】(Ⅰ)設(shè)出點M的坐標,表示出直線MP、MQ的斜率,求出它們的斜率之積,利用斜率之積是﹣ ,建立方程,去掉不滿足條件的點,即可得到點M的軌跡方程;(Ⅱ)分類討論,設(shè)出直線方程,結(jié)合題設(shè)條件求出三角形的面積,即可得出結(jié)論.
科目:高中數(shù)學 來源: 題型:
【題目】某市為了鼓勵市民節(jié)約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按0.5元/度收費,超過200度但不超過400度的部分按0.8元/度收費,超過400度的部分按1.0元/度收費.
(1)求某戶居民用電費用 (單位:元)關(guān)于月用電量 (單位:度)的函數(shù)解析式;
(2)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費用不超過260元的占80%,求 的值;
(3)在滿足(2)的條件下,估計1月份該市居民用戶平均用電費用(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】)已知函數(shù)f(x)=lnx﹣2ax,a∈R.
(1)若函數(shù)y=f(x)存在與直線2x﹣y=0平行的切線,求實數(shù)a的取值范圍;
(2)設(shè)g(x)=f(x)+ ,若g(x)有極大值點x1 , 求證: >a.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為R的函數(shù) f (x)的導(dǎo)函數(shù)為f'(x),且滿足f'(x)﹣2f (x)>4,若 f (0)=﹣1,則不等式f(x)+2>e2x的解集為( )
A.(0,+∞)
B.(﹣1,+∞)
C.(﹣∞,0)
D.(﹣∞,﹣1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線C1: ( t 為參數(shù)),曲線C2: (r>0,θ為參數(shù)).
(1)當r=1時,求C 1 與C2的交點坐標;
(2)點P 為曲線 C2上一動點,當r= 時,求點P 到直線C1距離最大時點P 的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別是AD,DD1的中點,AB=4,則過B,E,F(xiàn)的平面截該正方體所得的截面周長為( )
A.6 +4
B.6 +2
C.3 +4
D.3 +2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)Sn為各項不相等的等差數(shù)列an的前n 項和,已知a3a8=3a11 , S3=9.
(1)求數(shù)列{an}的通項公式;
(2)若bn= ,數(shù)列{bn}的前n 項和為Tn , 求 的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校組織學生參加英語測試,成績的頻率分布直方圖如圖,數(shù)據(jù)的分組一次為[20,40),[40,60),[60,80),[80,100).若低于60分的人數(shù)是15人,則該班的學生人數(shù)是( )
A.45
B.50
C.55
D.60
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知F是雙曲線 ﹣ =1(a>0,b>0)的右焦點,A,B分別為其左、右頂點.O為坐標原點,D為其上一點,DF⊥x軸.過點A的直線l與線段DF交于點E,與y軸交于點M,直線BE與y軸交于點N,若3|OM|=2|ON|,則雙曲線的離心率為( )
A.3
B.4
C.5
D.6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com