(本題13分)
已知函數(shù)
(1)若
對一切實數(shù)
恒成立,求實數(shù)
的取值范圍.
(2)求
在區(qū)間
上的最小值
的表達(dá)式.
(1)
(2)
試題分析:⑴ 由
對
恒成立,即
恒成立
∴
,
∴實數(shù)
a的取值范圍為
. ……6分
⑵∵
1°:當(dāng)
時,
, ……10分
2°:當(dāng)
時,
, ……12分
。 ……13分
點評:含參數(shù)的二次函數(shù)的最值問題,主要是判斷對稱軸和區(qū)間的關(guān)系,分類討論時要做到分類標(biāo)準(zhǔn)不重不漏.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知二次函數(shù)
的圖象過點(1,13),圖像關(guān)于直線
對稱。
(1)求
的解析式。
(2)已知
,
,
① 若函數(shù)
的零點有三個,求實數(shù)
的取值范圍;
②求函數(shù)
在[
,2]上的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知函數(shù)
,對任意實數(shù)x都有
成立,若當(dāng)
時,
恒成立,則b的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)
已知二次函數(shù)
滿足
且
.
(Ⅰ)求
的解析式;
(Ⅱ)當(dāng)
時,不等式:
恒成立,求實數(shù)
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
二次函數(shù)
的圖象的對稱軸為
,則當(dāng)
時,
的值為( )
A. | B.1 | C.17 | D.25 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題共兩個小題,每題5分,滿分10分)
① 已知不等式
的解集是
,求
的值;
② 若函數(shù)
的定義域為
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如果二次函數(shù)
有兩個不同的零點,則
的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)已知函數(shù)f(x)=-x2+2ax+1-a在x∈[0,1]時有最大值2,求a的值.
查看答案和解析>>