【題目】若函數(shù)fx)=lnx與函數(shù)gx)=x2+2x+lnax0)有公切線,則實(shí)數(shù)a的取值范圍是(

A.01B.C.1,+∞D.

【答案】D

【解析】

分別設(shè)出切點(diǎn),求出切線,然后根據(jù)切線相等,得到gx)的切點(diǎn)橫坐標(biāo)與a的關(guān)系式,轉(zhuǎn)化為函數(shù)的值域問題,進(jìn)而求出實(shí)數(shù)a的取值范圍.

解:設(shè)fx)的切點(diǎn)為(x1lnx1),因?yàn)?/span>

所以切線為:ylnx1,即,(x10),

設(shè)gx)的切點(diǎn)為(x2,),因?yàn)?/span>gx)=2x+2,

故切線為:y2x2+2)(xx2).

.(x20),

因?yàn)槭枪芯,所以

消去x1得,lna,

hx,x∈(﹣10),

因?yàn)?/span>,

得:,

所以當(dāng)時(shí),hx)<0,hx)在(﹣1,0)上單調(diào)遞減,

hx)>h0,

,所以

.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】.對于nN*n2),定義一個(gè)如下數(shù)陣:,其中對任意的1in,1jn,當(dāng)i能整除j時(shí),aij1;當(dāng)i不能整除j時(shí),aij0.設(shè)

(Ⅰ)當(dāng)n6時(shí),試寫出數(shù)陣A66并計(jì)算

(Ⅱ)若[x]表示不超過x的最大整數(shù),求證:

(Ⅲ)若,,求證:gn)﹣1fn)<gn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面給出有關(guān)的四個(gè)論斷:①;②;③;④.以其中的三個(gè)論斷作為條件,余下的一個(gè)論斷作為結(jié)論,寫出一個(gè)正確的命題:若______,則_______(用序號表示)并給出證明過程:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個(gè)定點(diǎn)的距離之比為定值的點(diǎn)的軌跡是圓”.后來,人們將這個(gè)圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓在平面直角坐標(biāo)系中,點(diǎn).設(shè)點(diǎn)的軌跡為,下列結(jié)論正確的是( )

A. 的方程為

B. 軸上存在異于的兩定點(diǎn),使得

C. 當(dāng)三點(diǎn)不共線時(shí),射線的平分線

D. 上存在點(diǎn),使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某區(qū)有一塊空地,其中,.當(dāng)?shù)貐^(qū)政府規(guī)劃將這塊空地改造成一個(gè)旅游景點(diǎn),擬在中間挖一個(gè)人工湖,其中都在邊上,且,挖出的泥土堆放在地帶上形成假山,剩下的地帶開設(shè)兒童游樂場.為安全起見,需在的周圍安裝防護(hù)網(wǎng).

1)當(dāng)時(shí),求防護(hù)網(wǎng)的總長度;

2)若要求挖人工湖用地的面積是堆假山用地的面積的倍,試確定的大小;

3)為節(jié)省投入資金,人工湖的面積要盡可能小,問如何設(shè)計(jì)施工方案,可使的面積最。孔钚∶娣e是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知菱形的對角線交于點(diǎn),點(diǎn)為線段的中點(diǎn),,,將三角形沿線段折起到的位置,,如圖2所示.

(Ⅰ)證明:平面 平面;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表為年至年某百貨零售企業(yè)的線下銷售額(單位:萬元),其中年份代碼年份

年份代碼

線下銷售額

(1)已知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測年該百貨零售企業(yè)的線下銷售額;

(2)隨著網(wǎng)絡(luò)購物的飛速發(fā)展,有不少顧客對該百貨零售企業(yè)的線下銷售額持續(xù)增長表示懷疑,某調(diào)查平臺為了解顧客對該百貨零售企業(yè)的線下銷售額持續(xù)增長的看法,隨機(jī)調(diào)查了位男顧客、位女顧客(每位顧客從“持樂觀態(tài)度”和“持不樂觀態(tài)度”中任選一種),其中對該百貨零售企業(yè)的線下銷售額持續(xù)增長持樂觀態(tài)度的男顧客有人、女顧客有人,能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為對該百貨零售企業(yè)的線下銷售額持續(xù)增長所持的態(tài)度與性別有關(guān)?

參考公式及數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓Γ的左,右焦點(diǎn)分別為F1(,0)F2(,0),橢圓的左,右頂點(diǎn)分別為A,B,已知橢圓Γ上一異于A,B的點(diǎn)PPA,PB的斜率分別為k1k2,滿足.

1)求橢圓Γ的標(biāo)準(zhǔn)方程;

2)若過橢圓Γ左頂點(diǎn)A作兩條互相垂直的直線AMAN,分別交橢圓ΓMN兩點(diǎn),問x軸上是否存在一定點(diǎn)Q,使得MQA=∠NQA成立,若存在,則求出該定點(diǎn)Q,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一款小游戲的規(guī)則如下:每輪游戲要進(jìn)行三次,每次游戲都需要從裝有大小相同的2個(gè)紅球,3個(gè)白球的袋中隨機(jī)摸出2個(gè)球,若摸出的兩個(gè)都是紅球出現(xiàn)3次獲得200分,若摸出兩個(gè)都是紅球出現(xiàn)1次或2次獲得20分,若摸出兩個(gè)都是紅球出現(xiàn)0次則扣除10分(即獲得分).

1)設(shè)每輪游戲中出現(xiàn)摸出兩個(gè)都是紅球的次數(shù)為,求的分布列;

2)玩過這款游戲的許多人發(fā)現(xiàn),若干輪游戲后,與最初的分?jǐn)?shù)相比,分?jǐn)?shù)沒有增加反而減少了,請運(yùn)用概率統(tǒng)計(jì)的相關(guān)知識分析解釋上述現(xiàn)象.

查看答案和解析>>

同步練習(xí)冊答案