【題目】如圖1,已知菱形的對角線交于點,點為線段的中點,,,將三角形沿線段折起到的位置,,如圖2所示.

(Ⅰ)證明:平面 平面;

(Ⅱ)求三棱錐的體積.

【答案】(Ⅰ)見證明;(Ⅱ)

【解析】

(Ⅰ)折疊前,ACDE;,從而折疊后,DEPF,DECF,由此能證明DE⊥平面PCF

再由DCAE,DCAE能得到DCEB,DCEB.說明四邊形DEBC為平行四邊形.可得CBDE.由此能證明平面PBC⊥平面PCF

(Ⅱ)由題意根據(jù)勾股定理運算得到,又由(Ⅰ)的結(jié)論得到 ,可得平面,再利用等體積轉(zhuǎn)化有,計算結(jié)果.

(Ⅰ)折疊前,因為四邊形為菱形,所以

所以折疊后,,, 又,平面,

所以平面

因為四邊形為菱形,所以

又點為線段的中點,所以

所以四邊形為平行四邊形.

所以

平面,所以平面

因為平面,所以平面平面

(Ⅱ)圖1中,由已知得,,

所以圖2中,,又

所以,所以

平面,所以

,平面,

所以平面,

所以

所以三棱錐的體積為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有多少種不同的方法將集合中的元素歸入三個有序集合,使得每個元素至少含于其中一個集合之中,這三個集合的交是空集,而其中任兩個集合的交都不是空集?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合.為集合中構(gòu)成等差數(shù)列的個元素,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在的偶函數(shù),且.當(dāng)時,,若方程300個不同的實數(shù)根,則實數(shù)m的取值范圍為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求函數(shù)的單調(diào)性;

2)當(dāng)時,,求函數(shù)上的最小值;

3)當(dāng)時,有兩個零點,,且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

某學(xué)校高一數(shù)學(xué)興趣小組對學(xué)生每周平均體育鍛煉小時數(shù)與體育成績優(yōu)秀(體育成績滿分100分,不低于85分稱優(yōu)秀)人數(shù)之間的關(guān)系進行分析研究,他們從本校初二,初三,高一,高二,高三年級各隨機抽取了40名學(xué)生,記錄并整理了這些學(xué)生周平均體育鍛煉小時數(shù)與體育成績優(yōu)秀人數(shù),得到如下數(shù)據(jù)表:

初二

初三

高一

高二

高三

周平均體育鍛煉小時數(shù)工(單位:小時)

14

11

13

12

9

體育成績優(yōu)秀人數(shù)y(單位:人)

35

26

32

26

19

該興趣小組確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進行檢驗.

1)若選取的是初三,高一,高二的3組數(shù)據(jù),請根據(jù)這3組數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

2)若由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗數(shù)據(jù)的誤差均不超過1,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得到的線性回歸方程是否可靠?

參考數(shù)據(jù):,.

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入4萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開始計數(shù)的.

1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;

2)估計該公司投入4萬元廣告費用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);

3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:

廣告投入x(單位:萬元)

1

2

3

4

5

銷售收益y(單位:萬元)

1

3

4

7

表中的數(shù)據(jù)顯示,xy之間存在線性相關(guān)關(guān)系,請將(2)的結(jié)果填入上表的空白欄,并計算y關(guān)于x的回歸方程.

回歸直線的斜率和截距的最小二乘法估計公式分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù),是自然對數(shù)的底數(shù)),曲線在點處的切線與軸垂直.

1)求的單調(diào)區(qū)間;

2)設(shè),對任意,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點的兩頂點,且點滿足

(1)求動點的軌跡方程;

(2)設(shè),求動點的軌跡方程;

(3)過點的動直線與曲線交于不同兩點,過點軸垂線,試判斷直線與直線的交點是否恒在一條定直線上?若是,求該定直線的方程,否則,說明理由.

查看答案和解析>>

同步練習(xí)冊答案