精英家教網 > 高中數學 > 題目詳情
如圖,是半徑為a的半圓,AC為直徑,點E為的中點,點B和點C為線段AD的三等分點,平面AEC外一點F滿足,
(1)證明:EB⊥FD;
(2)已知點Q,R為線段FE,FB上的點,,,求平面BED與平面RQD所成二面角的正弦值.

【答案】分析:(1)要證明EB⊥FD,我們可以轉化為證明EB⊥平面BDF,由,,我們易得△EBF為直角三角形,即EB⊥BF,又由E是半圓的中點,則其圓心角∠EBD=90°,結合線面垂直的判斷定理和定義,不難給出結論.
(2)要求平面BED與平面RQD所成二面角的正弦值,關鍵是要根據二面角的定義,先求出二面角的平面角,根據(1)的結論和已知我們可得DG⊥平面BDF,DG⊥DR,DG⊥DQ,即∠RDB是平面BED與平面RQD所成二面角的平面角,解三角形RDB即可得到結論.
解答:(1)證明:連接CF,因為是半徑為a的半圓,AC為直徑,點E為的中點,所以EB⊥AC.
在RT△BCE中,
在△BDF中,,△BDF為等腰三角形,且點C是底邊BD的中點,故CF⊥BD.
在△CEF中,,所以△CEF為Rt△,且CF⊥EC.
因為CF⊥BD,CF⊥EC,且CE∩BD=C,所以CF⊥平面BED,
而EB?平面BED,∴CF⊥EB.
因為EB⊥AC,EB⊥CF,且AC∩CF=C,所以EB⊥平面BDF,
而FD?平面BDF,∴EB⊥FD.
(2)解:設平面BED與平面RQD的交線為DG.
,,知QR∥EB.
而EB?平面BDE,∴QR∥平面BDE,
而平面BDE∩平面RQD=DG,
∴QR∥DG∥EB.
由(1)知,BE⊥平面BDF,∴DG⊥平面BDF,
而DR,DB?平面BDF,∴DG⊥DR,DG⊥DB,
∴∠RDB是平面BED與平面RQD所成二面角的平面角.
在Rt△BCF中,,,
在△BDR中,由知,
由余弦定理得,=
由正弦定理得,,即,
故平面BED與平面RQD所成二面角的正弦值為
點評:求二面角的大小,一般先作出二面角的平面角.此題是利用二面角的平面角的定義作出∠RDB為平面BED與平面RQD所成二面角的平面角,通過解∠RDB所在的三角形求得∠RDB.其解題過程為:作∠RDB→證∠RDB是二面角的平面角→計算∠RDB,簡記為“作、證、算”.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•泉州模擬)如圖,點O為坐標原點,直線l經過拋物線C:y2=4x的焦點F.
(Ⅰ)若點O到直線l的距離為
12
,求直線l的方程;
(Ⅱ)設點A是直線l與拋物線C在第一象限的交點.點B是以點F為圓心,|FA|為半徑的圓與x軸負半軸的交點.試判斷直線AB與拋物線C的位置關系,并給出證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•黃浦區(qū)一模)如圖所示,點A、B是單位圓(圓心在原點,半徑為1的圓)上兩點,OA、OB與x軸正半軸所成的角分別為α和-β.
OA
=(cosα,sinα)
,
OB
=(cos(-β),sin(-β))
,用兩種方法計算
OA
OB
后,利用等量代換可以得到的等式是
cos(α+β)=cosαcosβ-sinαsinβ
cos(α+β)=cosαcosβ-sinαsinβ

查看答案和解析>>

科目:高中數學 來源:2010-2011學年江蘇省姜堰市高三第一學期學情調研數學試卷 題型:解答題

(本試卷共40分,考試時間30分鐘)

21.(選做題)本大題包括A,B,C,D共4小題,請從這4題中選做2小題. 每小題10分,共20分.請在答題卡上準確填涂題目標記. 解答時應寫出文字說明、證明過程或演算步驟.

A. 選修4-1:幾何證明選講

如圖,是邊長為的正方形,以為圓心,為半徑的圓弧與以為直徑的半⊙O交于點,延長

   (1)求證:的中點;(2)求線段的長.

 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年江蘇省姜堰市二中學高三學情調查數學試卷 題型:解答題

(選做題)本大題包括A,B,C,D共4小題,請從這4題中選做2小題. 每小題10分,共20分.請在答題卡上準確填涂題目標記. 解答時應寫出文字說明、證明過程或演算步驟.

A. 選修4-1:幾何證明選講

如圖,是邊長為的正方形,以為圓心,為半徑的圓弧與以為直徑的半⊙O交于點,延長

   (1)求證:的中點;(2)求線段的長.

B.選修4-2:矩陣與變換

已知矩陣A,其中,若點在矩陣A的變換下得到

   (1)求實數的值;

   (2)矩陣A的特征值和特征向量.

 

C. 選修4-4:坐標系與參數方程

在極坐標系中,圓的極坐標方程為,

(1)過極點的一條直線與圓相交于,A兩點,且∠,求的長.

(2)求過圓上一點,且與圓相切的直線的極坐標方程;

 

D.選修4-5:不等式選講

已知實數滿足,求的最小值;

 

 

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,是半徑為2的一個半圓,O為圓心,A、B是直徑的兩個端點,M、N為半圓弧上的兩個動點(點M不與A重合),點P在半徑OA上,OP=a(a為定值),其中0<a<2,∠AOM=2∠BPN,直線PN與OM相交于點Q.能否找到兩條相交直線,使動點Q到這兩條直線的距離之積為定值?若能,請求出這個定值;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案