分析 (1)根據(jù)正弦函數(shù)的圖象和性質(zhì)可得f(x+a)=A,f(x)=-A,故a的最小值為f(x)的半周期.
(2)使用和角公式化簡,利用三角函數(shù)的性質(zhì)得出最大值.
解答 解:(1)∵f(x)的最大值為A,最小值為-A,f(x+a)-f(x)=2A,
∴f(x+a)=A,f(x)=-A,∴a的最小值為f(x)的半周期.
∵f(x)的周期T=π,∴a的最小值為$\frac{π}{2}$.
(2)f(x+$\frac{π}{6}$)=sin(2x+$\frac{π}{3}+$φ),f(x)=sin(2x+φ).
∴f(x+$\frac{π}{6}$)-f(x)=sin(2x+$\frac{π}{3}+$φ)-sin(2x+φ)=$\frac{1}{2}$sin(2x+φ)+$\frac{\sqrt{3}}{2}$cos(2x+φ)-sin(2x+φ)
=$\frac{\sqrt{3}}{2}$cos(2x+φ)-$\frac{1}{2}$sin(2x+φ)
=cos(2x+$\frac{π}{6}$+φ).
∴f(x+$\frac{π}{6}$)-f(x)的最大值為1.
故答案為$\frac{π}{2}$,1.
點(diǎn)評 本題考查了正弦函數(shù)的圖象與性質(zhì),三角函數(shù)的恒等變換,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | -$\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x>1} | B. | {x|x>$\frac{1}{2}$} | C. | {x|0<x<1} | D. | {x|0<x<2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com