“中國式過馬路”存在很大的交通安全隱患.某調(diào)查機構(gòu)為了解路人對“中國式過馬路 ”的態(tài)度是否與性別有關(guān),從馬路旁隨機抽取30名路人進行了問卷調(diào)查,得到了如下列聯(lián)表:

 
男性
女性
合計
反感
10

 
不反感

8
 
合計
 
 
30
已知在這30人中隨機抽取1人抽到反感“中國式過馬路 ”的路人的概率是.
(Ⅰ)請將上面的2×2列聯(lián)表補充完整(在答題卡上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路 ”與性別是否有關(guān)?
(Ⅱ)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù)和公式:
2×2列聯(lián)表公式:的臨界值表:

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828

(Ⅰ)沒有充足的理由認為反感“中國式過馬路”與性別有關(guān).
(Ⅱ)的分布列為:


0
1
2




的數(shù)學(xué)期望為: 

解析試題分析:(Ⅰ)

 
男性
女性
合計
反感
10
6
16
不反感
6
8
14
合計
16
14
30
     3分
設(shè):反感“中國式過馬路 ”與性別與否無關(guān)
由已知數(shù)據(jù)得:
所以,沒有充足的理由認為反感“中國式過馬路”與性別有關(guān).    6分
(Ⅱ)的可能取值為
 
                                   9分
所以的分布列為:

0
1
2




的數(shù)學(xué)期望為:           13分
考點:獨立性檢驗,離散型隨機變量的分布列與期望。
點評:中檔題,本題是概率統(tǒng)計的基本問題,考查離散型隨機變量的分布列與期望,確定變量的取值,計算概率是關(guān)鍵.卡方計算公式不需要記憶。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某數(shù)學(xué)老師對本校2013屆高三學(xué)生的高考數(shù)學(xué)成績按1:200進行分層抽樣抽取了20名學(xué)生的成績,并用莖葉圖記錄分數(shù)如圖所示,但部分數(shù)據(jù)不小心丟失,同時得到如下所示的頻率分布表:

分數(shù)段(分)
[50,70)
[70,90)
[90,110)
[110,130)
[130,150)
總計
頻數(shù)
 
 
 
b
 
 
頻率
a
0.25
 
 
 
 

(1)求表中a,b的值及分數(shù)在[90,100)范圍內(nèi)的學(xué)生人數(shù),并估計這次考試全校學(xué)生數(shù)學(xué)成績的及格率(分數(shù)在[90,150)內(nèi)為及格):
(2)從成績大于等于110分的學(xué)生中隨機選兩人,求這兩人成績的平均分不小于130分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了研究玉米品種對產(chǎn)量的影響,某農(nóng)科院對一塊試驗田種植的一批玉米共10000 株的生長情況進行研究,現(xiàn)采用分層抽樣方法抽取50株作為樣本,統(tǒng)計結(jié)果如下:

 
高莖
矮莖
合計
圓粒
11
19
30
皺粒
13
7
20
合計
24
26
50
 (1) 現(xiàn)采用分層抽樣的方法,從這個樣本中取出10株玉米,再從這10株玉米中隨機選出3株,求選到的3株之中既有圓粒玉米又有皺粒玉米的概率;
(2) 根據(jù)對玉米生長情況作出的統(tǒng)計,是否能在犯錯誤的概率不超過0.050的前提下認為玉米的圓粒與玉米的高莖有關(guān)?(下面的臨界值表和公式可供參考:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
,其中)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

給出施化肥量(kg)對水稻產(chǎn)量(kg)影響的試驗數(shù)據(jù):

施化肥量x
 
15
 
20
 
25
 
30
 
水稻產(chǎn)量y
 
330
 
345
 
365
 
405
 
(1)試求出回歸直線方程;
(2)請估計當施化肥量為10時,水稻產(chǎn)量為多少?
(已知:7.5×31.25+2.5×16.25+2.5×3.75+7.5×43.75=612.5,2×7.5×7.5+2×2.5×2.5=125)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校的研究性學(xué)習(xí)小組為了研究高中學(xué)生的身體發(fā)育狀況,在該校隨機抽出120名17至18周歲的男生,其中偏重的有60人,不偏重的也有60人。在偏重的60人中偏高的有40人,不偏高的有20人;在不偏重的60人中偏高和不偏高人數(shù)各占一半
(1)根據(jù)以上數(shù)據(jù)建立一個列聯(lián)表:

 
偏重
不偏重
合計
偏高
 
 
 
不偏高
 
 
 
合計
 
 
 
(2)請問該校17至18周歲的男生身高與體重是否有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2012年元旦、春節(jié)前夕,各個物流公司都出現(xiàn)了爆倉現(xiàn)象,直接原因就是網(wǎng)上瘋狂的購物.某商家針對人們在網(wǎng)上購物的態(tài)度在某城市進行了一次調(diào)查,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人對網(wǎng)上購物持贊成態(tài)度,另外27人持反對態(tài)度;男性中有21人贊成網(wǎng)上購物,另外33人持反對態(tài)度.
(Ⅰ) 估計該地區(qū)對網(wǎng)上購物持贊成態(tài)度的比例;
(Ⅱ) 有多大的把握認為該地區(qū)對網(wǎng)上購物持贊成態(tài)度與性別有關(guān);
附:表1

K2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某市調(diào)研考試后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為.

 
優(yōu)秀
非優(yōu)秀
合計
甲班
10
 
 
乙班
 
30
 
合計
 
 
110
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99%的可靠性要求,能否認為“成績與班級有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號.試求抽到9號或10號的概率.附: 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

我校高三年級進行了一次水平測試.用系統(tǒng)抽樣的方法抽取了50名學(xué)生的數(shù)學(xué)成績,準備進行分析和研究.經(jīng)統(tǒng)計成績的分組及各組的頻數(shù)如下:
[40,50), 2;   [50,60), 3;  [60,70), 10;  [70,80), 15;   [80,90), 12;  [90,100], 8.
(Ⅰ)完成樣本的頻率分布表;畫出頻率分布直方圖.
(Ⅱ)估計成績在85分以下的學(xué)生比例;
(Ⅲ)請你根據(jù)以上信息去估計樣本的眾數(shù)、中位數(shù)、平均數(shù).(精確到0.01)
頻率分布表                       頻率分布直方圖
     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了調(diào)查胃病是否與生活規(guī)律有關(guān),調(diào)查某地540名40歲以上的人得結(jié)果如下:

 
患胃病
未患胃病
合計
生活不規(guī)律
60
260
320
生活有規(guī)律
20
200
220
合計
80
460
540
根據(jù)以上數(shù)據(jù)回答40歲以上的人患胃病與生活規(guī)律有關(guān)嗎?

查看答案和解析>>

同步練習(xí)冊答案