20.由曲線y=1-$\sqrt{1{-x}^{2}}$,y=-x2+2x所圍成圖形的面積為$\frac{π}{4}$-$\frac{1}{3}$.

分析 作出圖形,使用作差法和定積分的幾何意義求出面積.

解答 解:S=${∫}_{0}^{1}$(-x2+2x)dx-${∫}_{0}^{1}$(1-$\sqrt{1-{x}^{2}}$)dx=(-$\frac{{x}^{3}}{3}$+x2)${|}_{0}^{1}$-(1-$\frac{π}{4}$)=$\frac{π}{4}-\frac{1}{3}$.
故答案為:$\frac{π}{4}-\frac{1}{3}$.

點評 本題考查了使用定積分求面積,和定積分的幾何意義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知銳角△ABC的三內(nèi)角A,B,C所對的邊分別是a,b,c,且b=2csinB.
(1)求角C的大小;
(2)若c2=(a-b)2+4,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)a=cos420°,函數(shù)$f(x)=\left\{\begin{array}{l}{a^x},x≤0\\{log_a}x,x>0\end{array}\right.$,則f($\frac{1}{4}$)+f(-2)的值為(  )
A.2B.6C.$\frac{9}{4}$D.-$\frac{7}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)y=lg(-x2+2x)的單調(diào)遞增區(qū)間是( 。
A.(-∞,1)B.(1,2)C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知點A(1,3),B(-2,-1),若直線l:y=k(x-2)+1與線段AB相交,則k的取值范圍( 。
A.k≥$\frac{1}{2}$B.k≤-2C.k≥$\frac{1}{2}$或k≤-2D.-2≤k≤$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.比較下列各組數(shù)的大。
(1)sin(-$\frac{37}{6}$π)與sin$\frac{49}{3}$π;
(2)cos870°與sin980°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.將點的直角坐標(biāo)(-$\sqrt{6}$,$\sqrt{6}$,2)化為柱坐標(biāo)為(2$\sqrt{3}$,$\frac{3π}{4}$,2),化為球坐標(biāo)為(4,$\frac{π}{3}$,$\frac{3π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=-x3+mx2-3x-1在區(qū)間[1,3]上是增函數(shù),則m的取值范圍是( 。
A.[4,+∞)B.(-∞,4]C.(5,+∞)D.[5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=($\frac{1}{1+x}$-1)lnx的極值點為x=x0,記e≈2.71828,給出下列4個式子的序號:
①f(x0)<x0; 
②f(x0)>x0;
③ef(x0)<1;
 ④e2f(x0)>1,
其中,正確的序號是(  )
A.①③B.②④C.D.③④

查看答案和解析>>

同步練習(xí)冊答案