15.已知點A(1,3),B(-2,-1),若直線l:y=k(x-2)+1與線段AB相交,則k的取值范圍( 。
A.k≥$\frac{1}{2}$B.k≤-2C.k≥$\frac{1}{2}$或k≤-2D.-2≤k≤$\frac{1}{2}$

分析 直線l:y=k(x-2)+1經(jīng)過定點P(2,1),利用斜率計算公式可得:kPA,kPB,根據(jù)直線l:y=k(x-2)+1與線段AB相交,即可得出.

解答 解:直線l:y=k(x-2)+1經(jīng)過定點P(2,1),
∵kPA=$\frac{3-1}{1-2}$=-2,kPB=$\frac{-1-1}{-2-2}$=$\frac{1}{2}$,
又直線l:y=k(x-2)+1與線段AB相交,
∴-2≤k$≤\frac{1}{2}$,
故選:D.

點評 本題考查了直線的傾斜角與斜率的關(guān)系,考查了數(shù)形結(jié)合方法、計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)$y={log_a}({x^2}-ax+\frac{1}{2})$,對任意的x1,x2∈[1,+∞),且x1≠x2時,滿足$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>0$,則實數(shù)a的取值范圍是( 。
A.$(1,\frac{3}{2})$B.$({\frac{3}{2},+∞}]$C.(1,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow{a}$=(2cosx,-1),$\overrightarrow$=$(\frac{{\sqrt{3}}}{2}sinx,\frac{1}{2}cos2x)$,x∈R,設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)求f(x)在$[{0,\frac{π}{2}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如果不等式x2+mx+n≤0的解集為A=[2,5],B=[a,a+1]
(1)求實數(shù)m,n的值;
(2)設(shè)p:x∈A,q:x∈B,若q是p的充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,四棱錐P-ABCD的底面是正方形,側(cè)棱PA⊥面ABCD,BD交AC于點E,F(xiàn)是PC中點,G為AC上一動點.
(1)求證:BD⊥FG;
(2)在線段AC上是否存在一點G使FG∥平面PBD,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.由曲線y=1-$\sqrt{1{-x}^{2}}$,y=-x2+2x所圍成圖形的面積為$\frac{π}{4}$-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.長方體長、寬、高之比為2:3:4,全面積為208,長方體的體積為192.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.兩圓C1:x2+y2=4與C2:x2+y2-2x-1=0的位置關(guān)系是(  )
A.相外切B.相內(nèi)切C.相交D.外離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知$\overrightarrow{a}$=(-1,1),$\overrightarrow{a}+\overrightarrow$=(3,4),求向量$\overrightarrow$的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案