【題目】近年來(lái),共享單車(chē)的出現(xiàn)為市民綠色出行提供了極大的方便,某共享單車(chē)公司Mobike計(jì)劃在甲、乙兩座城市共投資120萬(wàn)元,根據(jù)行業(yè)規(guī)定,每個(gè)城市至少要投資40萬(wàn)元,由前期市場(chǎng)調(diào)研可知:甲城市收益P與投入a(單位:萬(wàn)元)滿足,乙城市收益Q與投入a(單位:萬(wàn)元)滿足,設(shè)甲城市的投入為x(單位:萬(wàn)元),兩個(gè)城市的總收益為(單位:萬(wàn)元).

(1)求及定義域;

(2)試問(wèn)如何安排甲、乙兩個(gè)城市的投資,才能使總收益最大?

【答案】(1);(2)甲城市投資72萬(wàn)元,乙城市投資48萬(wàn)元時(shí),總收益最大,且最大收益為44萬(wàn)元.

【解析】

1)由題知,甲城市投資x萬(wàn)元,乙城市投資萬(wàn)元,,即可求出答案.

(2)令,則.利用二次函數(shù)的單調(diào)性即可得出答案.

解:(1)由題知,甲城市投資x萬(wàn)元,乙城市投資120-x萬(wàn)元.

,

依題意得,解得

(2)令,則

當(dāng),即萬(wàn)元時(shí),y的最大值為44萬(wàn)元

∴當(dāng)甲城市投資72萬(wàn)元,乙城市投資48萬(wàn)元時(shí),總收益最大,且最大收益為44萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)將100名髙一新生分成水平相同的甲、乙兩個(gè)平行班”,每班50.陳老師采用A、B兩種不同的教學(xué)方式分別在甲、乙兩個(gè)班級(jí)進(jìn)行教改實(shí)驗(yàn).為了解教學(xué)效果,期末考試后,陳老師對(duì)甲、乙兩個(gè)班級(jí)的學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì)分析,畫(huà)出頻率分布直方圖(如下圖).記成績(jī)不低于90分者為成績(jī)優(yōu)秀

 

0.05

0.01

0.001

 

3.841

6.635

10.828

(I)從乙班隨機(jī)抽取2名學(xué)生的成績(jī),成績(jī)優(yōu)秀的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望

(II)根據(jù)頻率分布直方圖填寫(xiě)下面2 x2列聯(lián)表,并判斷是否有95%的把握認(rèn)為:“成績(jī)優(yōu)秀與教學(xué)方式有關(guān).

甲班A方式)

乙班(B方式)

總計(jì)

成績(jī)優(yōu)秀

成績(jī)不優(yōu)秀

總計(jì)

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知奇函數(shù)fx)=aa為常數(shù)).

1)求a的值;

2)若函數(shù)gx)=|2x+1fx|k2個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍;

3)若x[2,﹣1]時(shí),不等式fx恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.直線交曲線,兩點(diǎn).

(Ⅰ)寫(xiě)出直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)的直角坐標(biāo)為,求點(diǎn),兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出以下四個(gè)結(jié)論:

①函數(shù)是偶函數(shù);

②當(dāng)時(shí),函數(shù)的值域是;

③若扇形的周長(zhǎng)為,圓心角為,則該扇形的弧長(zhǎng)為6 cm;

④已知定義域?yàn)?/span>的函數(shù),當(dāng)且僅當(dāng)時(shí),成立.

則上述結(jié)論中正確的是______(寫(xiě)出所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知四邊形BCDE為直角梯形,,,且,ABE的中點(diǎn)沿AD折到位置如圖,連結(jié)PC,PB構(gòu)成一個(gè)四棱錐

求證;

平面ABCD

求二面角的大小;

在棱PC上存在點(diǎn)M,滿足,使得直線AM與平面PBC所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】寶寶的健康成長(zhǎng)是媽媽們最關(guān)心的問(wèn)題,父母親為嬰兒選擇什么品牌的奶粉一直以來(lái)都是育嬰中的一個(gè)重要話題,為了解過(guò)程奶粉的知名度和消費(fèi)者的信任度,某調(diào)查小組特別調(diào)查記錄了某大型連鎖超市2015年與2016年這兩年銷(xiāo)售量前5名的五個(gè)品牌奶粉的銷(xiāo)量(單位:罐),繪制如下的管狀圖:

(1)根據(jù)給出的這兩年銷(xiāo)量的管狀圖,對(duì)該超市這兩年品牌奶粉銷(xiāo)量的前五強(qiáng)進(jìn)行排名;

(2)分別計(jì)算這5個(gè)品牌奶粉2016年所占總銷(xiāo)量(僅指這5個(gè)品牌奶粉的總銷(xiāo)量)的百分比(百分?jǐn)?shù)精確到各位),并將數(shù)據(jù)填入如下餅狀圖中的括號(hào)內(nèi);

(3)已知該超市2014年飛鶴奶粉的銷(xiāo)量為(單位:罐),試以3年的銷(xiāo)量得出銷(xiāo)量關(guān)于年份的線性回歸方程,并據(jù)此預(yù)測(cè)2017年該超市飛鶴奶粉的銷(xiāo)量.

相關(guān)公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}是等差數(shù)列,首項(xiàng)a1=1,且a3+1a2+1a4+2的等比中項(xiàng).

1)求數(shù)列{an}的通項(xiàng)公式;

2)設(shè)bn=,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】先閱讀下列題目的證法,再解決后面的問(wèn)題.

已知a1,a2∈R,且a1+a2=1,求證:a+a.

證明:構(gòu)造函數(shù)f(x)=(x-a1)2+(x-a2)2,則f(x)=2x2-2(a1+a2)x+a+a=2x2-2x+a+a.

因?yàn)閷?duì)一切x∈R,恒有f(x)≥0,

所以Δ=4-8(a+a)≤0,從而得a+a.

(1)若a1,a2,…,an∈R,a1+a2+…+an=1,請(qǐng)由上述結(jié)論寫(xiě)出關(guān)于a1,a2,…,an的推廣式;

(2)參考上述證法,請(qǐng)對(duì)你推廣的結(jié)論加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案