A. | $[-\sqrt{3},\sqrt{3}]$ | B. | $(-∞,-\sqrt{3}]∪[\sqrt{3},+∞)$ | C. | $[-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}]$ | D. | $[-\frac{2}{3},0]$ |
分析 由圓的方程找出圓心坐標與半徑r,利用點到直線的距離公式表示出圓心到直線的距離d,利用垂徑定理及勾股定理表示出弦長|MN|,列出關于k的不等式,求出不等式的解集即可得到k的范圍.
解答 解:由圓的方程得:圓心(2,3),半徑r=2,
∵圓心到直線y=kx+3的距離d=$\frac{|2k+3-3|}{\sqrt{{k}^{2}+1}}$.
∵|MN|≥2,∴|MN|2=4(r2-d2)≥4,d2≤3;
即k2≤3,則k的取值范圍是[-$\sqrt{3}$,$\sqrt{3}$].
故選:A.
點評 此題考查了直線與圓相交的性質,涉及的知識有:圓的標準方程,點到直線的距離公式,垂徑定理,勾股定理,熟練掌握公式及定理是解本題的關鍵.屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1} | B. | {2,4} | C. | {2,4,6} | D. | {1,2,4,6} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | m≤-2 | B. | -2≤m≤0 | C. | 0≤m≤2 | D. | m≥2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$ | B. | $[{0,\frac{{\sqrt{3}}}{3}})$ | C. | $[{-\sqrt{3},\sqrt{3}}]$ | D. | $[{0,\sqrt{3}})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $-\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com