【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)已知函數(shù)的兩個(gè)極值點(diǎn),若,①證明:;②證明: .
【答案】(1)情況較多,見詳解,(2)證明見詳解
【解析】
(1)求出,然后分,,三種情況討論
(2)①由即可證明;②用分析法得到要證原命題即證,然后設(shè),利用導(dǎo)數(shù)得到在單調(diào)遞減,結(jié)合可得當(dāng)時(shí),當(dāng)時(shí),然后即可證明.
(1)由已知
①當(dāng)時(shí),,所以,所以函數(shù)在上單調(diào)遞增
②當(dāng)時(shí),在上有兩不等正實(shí)數(shù)根
記
當(dāng)時(shí),,單調(diào)遞增
當(dāng)時(shí),,單調(diào)遞減
當(dāng)時(shí),,單調(diào)遞增
③當(dāng)時(shí),
所以當(dāng)時(shí),,單調(diào)遞減
當(dāng)時(shí),,單調(diào)遞增
(2)①的定義域?yàn)?/span>,有兩個(gè)極值點(diǎn)
則在上有兩個(gè)不等正根
由(1)中可得
因?yàn)?/span>,所以,所以
②原命題即證明當(dāng)且,時(shí)成立
即證,即證
即證,即證
設(shè)
則
當(dāng)時(shí),在單調(diào)遞減
因?yàn)?/span>,所以當(dāng)時(shí),當(dāng)時(shí)
又因?yàn)?/span>時(shí),當(dāng)時(shí)
所以,原命題得證
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)滿足方程.
(1)求點(diǎn)的軌跡的方程;
(2)作曲線關(guān)于軸對(duì)稱的曲線,記為,在曲線上任取一點(diǎn),過點(diǎn)作曲線的切線,若切線與曲線交于,兩點(diǎn),過點(diǎn),分別作曲線的切線,,證明:,的交點(diǎn)必在曲線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年,全國(guó)各地區(qū)堅(jiān)持穩(wěn)中求進(jìn)工作總基調(diào),經(jīng)濟(jì)運(yùn)行總體平穩(wěn),發(fā)展水平邁上新臺(tái)階,發(fā)展質(zhì)量穩(wěn)步上升,人民生活福祉持續(xù)增進(jìn),全年最終消費(fèi)支出對(duì)國(guó)內(nèi)生產(chǎn)總值增長(zhǎng)的貢獻(xiàn)率為57.8%.下圖為2019年居民消費(fèi)價(jià)格月度漲跌幅度:(同比(本期數(shù)-去年同期數(shù))/去年同期數(shù),環(huán)比(本期數(shù)-上期數(shù))/上期數(shù)
下列結(jié)論中不正確的是( )
A.2019年第三季度的居民消費(fèi)價(jià)格一直都在增長(zhǎng)
B.2018年7月份的居民消費(fèi)價(jià)格比同年8月份要低一些
C.2019年全年居民消費(fèi)價(jià)格比2018年漲了2.5%以上
D.2019年3月份的居民消費(fèi)價(jià)格全年最低
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若函數(shù)有兩個(gè)不同的極值點(diǎn)、,求證:;
(3)設(shè),函數(shù)的反函數(shù)為,令,、、,,且,若時(shí),對(duì)任意的且,恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中心在原點(diǎn)的橢圓E的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)關(guān)于直線對(duì)稱,且橢圓E與坐標(biāo)軸的一個(gè)交點(diǎn)坐標(biāo)為.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線l(直線的斜率k存在且不為0)交E于A,B兩點(diǎn),交x軸于點(diǎn)P點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為D,直線BD交x軸于點(diǎn)Q.試探究是否為定值?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,與等邊所在的平面相互垂直,,為線段中點(diǎn),直線與平面交于點(diǎn).,.
(1)求證:平面平面;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某籃球隊(duì)甲、乙兩名運(yùn)動(dòng)員練習(xí)罰球,每人練習(xí)10組,每組罰球40個(gè).命中個(gè)數(shù)的莖葉圖如圖,則下面結(jié)論中錯(cuò)誤的一個(gè)是( )
A. 甲的極差是29 B. 甲的中位數(shù)是24
C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠共有50位工人組裝某種零件.下面的散點(diǎn)圖反映了工人們組裝每個(gè)零件所用的工時(shí)(單位:分鐘)與人數(shù)的分布情況.由散點(diǎn)圖可得,這50位工人組裝每個(gè)零件所用工時(shí)的中位數(shù)為___________.若將500個(gè)要組裝的零件分給每個(gè)工人,讓他們同時(shí)開始組裝,則至少要過_________分鐘后,所有工人都完成組裝任務(wù).(本題第一空2分,第二空3分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年全國(guó)“兩會(huì)”,即中華人民共和國(guó)第十三屆全國(guó)人大二次會(huì)議和中國(guó)人民政治協(xié)商會(huì)議第十三屆全國(guó)會(huì)第二次會(huì)議,分別于2019年3月5日和3月3日在北京召開.為了了解哪些人更關(guān)注“兩會(huì)”,某機(jī)構(gòu)隨機(jī)抽取了年齡在歲之間的200人進(jìn)行調(diào)查,并按年齡繪制出頻率分布直方圖,如圖.
若把年齡在區(qū)間,內(nèi)的人分別稱為“青少年”“中老年”.經(jīng)統(tǒng)計(jì)“青少年”和“中老年”的人數(shù)之比為.其中“青少年”中有40人關(guān)注“兩會(huì)”,“中老年”中關(guān)注“兩會(huì)”和不關(guān)注“兩會(huì)”的人數(shù)之比為.
(1)求圖中的值.
(2)現(xiàn)采用分層抽樣在和中隨機(jī)抽取8人作為代表,從8人中任選2人,求2人都是“中老年”的概率.
(3)根據(jù)已知條件,完成下面的列聯(lián)表,并判斷能否有%的把握認(rèn)為“中老年”比“青少年”更加關(guān)注“兩會(huì)”.
關(guān)注 | 不關(guān)注 | 總計(jì) | |
“青少年” | |||
“中老年” | |||
總計(jì) |
附:,其中.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com