10.近年來隨著我國在教育科研上的投入不斷加大,科學(xué)技術(shù)得到迅猛發(fā)展,國內(nèi)企業(yè)的國際競爭力得到大幅提升.伴隨著國內(nèi)市場增速放緩,國內(nèi)有實力企業(yè)紛紛進(jìn)行海外布局,第二輪企業(yè)出海潮到來.如在智能手機(jī)行業(yè),國產(chǎn)品牌已在趕超國外巨頭,某品牌手機(jī)公司一直默默拓展海外市場,在海外共設(shè)30多個分支機(jī)構(gòu),需要國內(nèi)公司外派大量70后、80后中青年員工.該企業(yè)為了解這兩個年齡層員工是否愿意被外派工作的態(tài)度,按分層抽樣的方式從70后和80后的員工中隨機(jī)調(diào)查了100位,得到數(shù)據(jù)如表:
愿意被外派不愿意被外派合計
70后202040
80后402060
合計6040100
(Ⅰ)根據(jù)調(diào)查的數(shù)據(jù),是否有90%以上的把握認(rèn)為“是否愿意被外派與年齡有關(guān)”,并說明理由;
(Ⅱ)該公司舉行參觀駐海外分支機(jī)構(gòu)的交流體驗活動,擬安排4名參與調(diào)查的70后員工參加.70后員工中有愿意被外派的3人和不愿意被外派的3人報名參加,現(xiàn)采用隨機(jī)抽樣方法從報名的員工中選4人,求選到愿意被外派人數(shù)不少于不愿意被外派人數(shù)的概率.
參考數(shù)據(jù):
P(K2>k)0.150.100.050.0250.0100.005
k2.0722.7063.8415.0246.6357.879
(參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

分析 (Ⅰ)計算觀測值,對照臨界值表即可得出結(jié)論;
(Ⅱ)用列表法求出所有基本事件數(shù)和愿意被外派人數(shù)不少于不愿意被外派人數(shù)的事件數(shù),
從而計算所求的概率值.

解答 解:(Ⅰ)計算${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}=\frac{{100×{{(20×20-40×20)}^2}}}{60×40×60×40}=\frac{400×400×100}{5760000}$
≈2.778>2.706,
所以有90%以上的把握認(rèn)為“是否愿意被外派與年齡有關(guān)”;
(Ⅱ)設(shè)70后員工中報名參加活動有愿意被外派的3人為Y1,Y2,Y3
不愿意被外派的3人為N1,N2,N3,現(xiàn)從中選4人,
如圖表所示,用×表示沒有被選到,

Y1Y2Y3N1N2N3
1××  
2×× 
3× ×
4×   × 
5×  ×
6×× 
7× ×
8×  ×
9×  ×
10××
11× ×
12× ×
13 ××
14 ××
15  ××
則“愿意被外派人數(shù)不少于不愿意被外派人數(shù)”
即“愿意被外派人數(shù)為2人或3人”共12種情況,
所求的概率為$P=\frac{12}{15}=\frac{4}{5}$.

點評 本題考查了獨立性檢驗與列舉法求古典概型的概率問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=aex-blnx,曲線y=f(x)在點(1,f(1))處的切線方程為$y=(\frac{1}{e}-1)x+1$.
(1)求a,b;
(2)證明:f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在信息時代的今天,隨著手機(jī)的發(fā)展,“微信”越來越成為人們交流的一種方式,某機(jī)構(gòu)對“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了100人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成的人數(shù)如下表:(注:年齡單位:歲)
年齡[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
頻數(shù)1030302055
贊成人數(shù)825241021
(1)若以“年齡45歲為分界點”,由以上統(tǒng)計數(shù)據(jù)完成下面的2×2列聯(lián)表,并通過計算判斷是否在犯錯誤的概率不超過0.001的前提下認(rèn)為“使用微信交流的態(tài)度與人的年齡有關(guān)”?
年齡不低于45歲的人數(shù)年齡低于45歲的人數(shù)合計
贊成
不贊成
合計
(2)若從年齡在[55,65),[65,75)的別調(diào)查的人中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,記選中的4人中贊成“使用微信交流”的人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù):
P(K2≥k00.0250.0100.005 0.001
k03.8416.6357.879 10.828
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦點為F(-1,0),左準(zhǔn)線為x=-2.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知直線l交橢圓C于A,B兩點.
①若直線l經(jīng)過橢圓C的左焦點F,交y軸于點P,且滿足$\overrightarrow{PA}=λ\overrightarrow{AF}$$\overrightarrow{PB}=μ\overrightarrow{BF}$,求證:λ+μ為常數(shù);
②若OA⊥OB(O為原點),求△AOB的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+t\\ y=\sqrt{3}+\sqrt{3}t\end{array}$(t為參數(shù)).在以坐標(biāo)原點O為極點,x軸非負(fù)半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ2-4ρcosθ-2$\sqrt{3}$ρsinθ+4=0.
(Ⅰ)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C交于A,B兩點,求|OA|•|OB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}滿足a1=1,an+1=$\frac{a_n}{{2{a_n}+1}}$(n∈N*),bn=$\frac{a_n}{2n+1}$,則數(shù)列{bn}的前n項和Sn=$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.對于下列說法正確的是(  )
A.若f(x)是奇函數(shù),則f(x)是單調(diào)函數(shù)
B.命題“若x2-x-2=0,則x=1”的逆否命題是“若x≠1,則x2-x-2=0”
C.命題p:?x∈R,2x>1024,則¬p:?x0∈R,${2^{x_0}}<1024$
D.命題“?x∈(-∞,0),2x<x2”是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)數(shù)列{an}滿足a2+a4=10,點Pn(n,an)對任意的n∈N*,都有向量$\overrightarrow{{P_n}{P_{n+1}}}=({1,2})$,則數(shù)列{an}的前n項和Sn=n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知命題p,?x∈R都有2x<3x,命題q:?x0∈R,使得${x_0}^3=1-{x_0}^2$,則下列復(fù)合命題正確的是(  )
A.p∧qB.¬p∧qC.p∧¬qD.(¬p)∧(¬q)

查看答案和解析>>

同步練習(xí)冊答案