【題目】已知函數(shù),且曲線處的切線斜率為1

1)求實(shí)數(shù)的值;

2)證明:當(dāng)時(shí),;

3)若數(shù)列滿足,且,證明:

【答案】12)見解析(3)見解析

【解析】

1)由即得的值;(2)只需證,利用導(dǎo)數(shù)證明上單調(diào)遞增,所以成立,即得證;(3)分析得到只需證,再利用導(dǎo)數(shù)證明即可.

1,,所以;

2)要證,只需證

因?yàn)?/span>

所以,

所以上單調(diào)遞增,

所以

所以上單調(diào)遞增,

所以成立,

所以當(dāng)時(shí),成立.

3)由(2)知當(dāng)時(shí),.

因?yàn)?/span>,

所以

設(shè),

所以;

要證:,只需證:,

因?yàn)?/span>

所以

因?yàn)?/span>,

所以,

所以

故只需證:,

因?yàn)?/span>,故只需證:,

即證:,

只需證:當(dāng)時(shí),

,

,

所以在區(qū)間上是增函數(shù),

,

所以在區(qū)間上是增函數(shù),

所以在區(qū)間上是增函數(shù),

,

所以原不等式成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在①;②;③,這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中,然后解答補(bǔ)充完整的題目.

在△中,內(nèi)角A,B,C所對(duì)的邊分別為.且滿足_________.

1)求

2)已知,△的外接圓半徑為,求△的邊AB上的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】質(zhì)量是企業(yè)的生命線,某企業(yè)在一個(gè)批次產(chǎn)品中隨機(jī)抽檢件,并按質(zhì)量指標(biāo)值進(jìn)行統(tǒng)計(jì)分析,得到表格如表:

質(zhì)量指標(biāo)值

等級(jí)

頻數(shù)

頻率

三等品

10

0.1

二等品

30

一等品

0.4

特等品

20

0.2

合計(jì)

1

1)求,;

2)從質(zhì)量指標(biāo)值在的產(chǎn)品中,按照等級(jí)分層抽樣抽取6件,再?gòu)倪@6件中隨機(jī)抽取2件,求至少有1件特等品被抽到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)a=-2時(shí),求函數(shù)f(x)的極值;

2)若ln[e(x+1)]≥2- f(-x)對(duì)任意的x[0,+∞)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長(zhǎng)為1的正方體中,為棱上的動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),過點(diǎn)作平面分別與棱交于,兩點(diǎn),若,則下列說法正確的是(

A.

B.存在點(diǎn),使得∥平面

C.存在點(diǎn),使得點(diǎn)到平面的距離為

D.用過,,三點(diǎn)的平面去截正方體,得到的截面一定是梯形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線t為參數(shù)),曲線,(為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系.

1)求曲線,的極坐標(biāo)方程;

2)射線分別交,A,B兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若存在實(shí)常數(shù),使得函數(shù)對(duì)其公共定義域上的任意實(shí)數(shù)x都滿足:恒成立,則稱此直線的“隔離直線”,已知函數(shù),,為自然對(duì)數(shù)的底數(shù)),則(

A.內(nèi)單調(diào)遞增;

B.之間存在“隔離直線”,且的最小值為;

C.之間存在“隔離直線”,且的取值范圍是;

D.之間存在唯一的“隔離直線”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)對(duì)函數(shù)進(jìn)行研究后,得出以下結(jié)論,其中正確的有(

A.函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱

B.對(duì)定義域中的任意實(shí)數(shù)的值,恒有成立

C.函數(shù)的圖象與軸有無(wú)窮多個(gè)交點(diǎn),且每相鄰兩交點(diǎn)間距離相等

D.對(duì)任意常數(shù),存在常數(shù),使函數(shù)上單調(diào)遞減,且

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦點(diǎn)在軸上,中心在坐標(biāo)原點(diǎn),拋物線的焦點(diǎn)在軸上,頂點(diǎn)在坐標(biāo)原點(diǎn),在、上各取兩個(gè)點(diǎn),將其坐標(biāo)記錄于表格中:

1)求、的標(biāo)準(zhǔn)方程;

2)已知定點(diǎn),為拋物線上的一動(dòng)點(diǎn),過點(diǎn)作拋物線的切線交橢圓、兩點(diǎn),求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案