已知為橢圓的左、右焦點(diǎn),是坐標(biāo)原點(diǎn),過(guò)作垂直于軸的直線交橢圓于.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)左焦點(diǎn)的直線與橢圓交于兩點(diǎn),若,求直線的方程.
(1)   (2) 即
本試題主要是考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運(yùn)用。
解:(Ⅰ)由條件知,且,由,              
解得, ,                ……………………………4分
所以橢圓方程為.                ………………………… 5分
(Ⅱ)設(shè)點(diǎn)A,B
當(dāng)軸時(shí),A,B,所以,     ………6分
設(shè)直線的方程為,
代入橢圓方程得.      ……………8分
所以                       ……………………… 9分
,得.               …………………… 10分
.
代入得,
解得.                                …………………… 12分
所以直線的方程為.          
 . 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分l2分)已知橢圓的的右頂點(diǎn)為A,離心率,過(guò)左焦點(diǎn)作直線與橢圓交于點(diǎn)P,Q,直線AP,AQ分別與直線交于點(diǎn)
(Ⅰ)求橢圓的方程;
(Ⅱ)證明以線段為直徑的圓經(jīng)過(guò)焦點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的的右頂點(diǎn)為A,離心率,過(guò)左焦點(diǎn)作直線與橢圓交于點(diǎn)P,Q,直線AP,AQ分別與直線交于點(diǎn)
(Ⅰ)求橢圓的方程;
(Ⅱ)證明以線段為直徑的圓經(jīng)過(guò)焦點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓),直線為圓的一條切線并且過(guò)橢圓的右焦點(diǎn),記橢圓的離心率為
(1)求橢圓的離心率的取值范圍;
(2)若直線的傾斜角為,求的大。
(3)是否存在這樣的,使得原點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)恰好在橢圓上.若存在,求出的大。蝗舨淮嬖冢(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,且過(guò)點(diǎn),過(guò)的右焦點(diǎn)任作直線,設(shè)兩點(diǎn)(異于的左、右頂點(diǎn)),再分別過(guò)點(diǎn),的切線,記相交于點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)證明:點(diǎn)在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)是橢圓上的動(dòng)點(diǎn),為橢圓的兩個(gè)焦點(diǎn),是坐標(biāo)原點(diǎn),若的角平分線上一點(diǎn),且,則的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,它與直線相交于P、Q兩點(diǎn),若,求橢圓方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(普通班)已知橢圓ab>0)的焦距為4,且與橢圓有相同的離心率,斜率為k的直線l經(jīng)過(guò)點(diǎn)M(0,1),與橢圓C交于不同兩點(diǎn)A、B
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.
(實(shí)驗(yàn)班)已知函數(shù)R).
(Ⅰ)若,求曲線在點(diǎn)處的的切線方程;
(Ⅱ)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知P為橢圓上一點(diǎn),F1、F2是橢圓的兩個(gè)焦點(diǎn),,則△F1PF2的面積是          .

查看答案和解析>>

同步練習(xí)冊(cè)答案