已知點
是橢圓
上的動點,
為橢圓的兩個焦點,
是坐標原點,若
是
的角平分線上一點,且
,則
的取值范圍是( )
解:由橢圓
的方程可得,c=
.
由題意可得,當點P在橢圓與y軸交點處時,點M與原點O重合,此時|OM|取最小值0.
當點P在橢圓與x軸交點處時,點M與焦點F
1重合,此時|OM|取最大值 c=
.
∵xy≠0,∴|OM|的取值范圍是(0,
).
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
(a>b>0),點
在橢圓上。
(I)求橢圓的離心率。
(II)設A為橢圓的右頂點,O為坐標原點,若Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值。
【考點定位】本小題主要考查橢圓的標準方程和幾何性質(zhì)、直線的方程、平面內(nèi)兩點間距離公式等基礎知識. 考查用代數(shù)方法研究圓錐曲線的性質(zhì),以及數(shù)形結(jié)合的數(shù)學思想方法.考查運算求解能力、綜合分析和解決問題的能力.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在橢圓
上有一點
M,
是橢圓的兩個焦點,若
,則橢圓離心率的范圍是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
為橢圓
的左、右焦點,
是坐標原點,過
作垂直于
軸的直線
交橢圓于
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過左焦點
的直線
與橢圓
交于
、
兩點,若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
點
、
為橢圓
的兩個焦點,點
為
上一動點(異于橢圓的長軸的兩個端點),則△
的重心
的軌跡
是( )
A.一個橢圓,且與具有相同的離心率 |
B.一個橢圓,但與具有不同的離心率 |
C.一個橢圓(去掉長軸的兩個端點),且與具有相同的離心率 |
D.一個橢圓(去掉長軸的兩個端點),但與具有不同的離心率 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
:
的左、右焦點分別為
,它的一條準線為
,過點
的直線與橢圓
交于
、
兩點.當
與
軸垂直時,
.
(1)求橢圓
的方程;
(2)若
,求
的內(nèi)切圓面積最大時正實數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
是等腰三角形,
=
,則以
為焦點且過點
的雙曲線的離心率為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設C是橢圓:
上任意一點,A、B是焦點,則在∆ABC中有:
,類似地,點C是雙曲線
任意一點,A、B是兩焦點,則∆ABC中有____________
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若雙曲線
的一個焦點為(2,0),則它的離心率為( )
查看答案和解析>>