【題目】某學(xué)校為調(diào)查高三年級學(xué)生的身高情況,按隨機抽樣的方法抽取100名學(xué)生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在的男生人數(shù)有16人.
(1)試問在抽取的學(xué)生中,男,女生各有多少人?
(2)根據(jù)頻率分布直方圖,完成下列的列聯(lián)表,并判斷能有多大(百分之幾)的把握認(rèn)為“身高與性別有關(guān)”?
總計 | |||
男生身高 | |||
女生身高 | |||
總計 |
(3)在上述100名學(xué)生中,從身高在之間的男生和身高在之間的女生中間按男、女性別分層抽樣的方法,抽出6人,從這6人中選派2人當(dāng)旗手,求2人中恰好有一名女生的概率.
參考公式:
參考數(shù)據(jù):
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)40,60;(2)列聯(lián)表見解析,有的把握認(rèn)為身高與性別有關(guān);(3).
【解析】
(1)根據(jù)直方圖求出男生的人數(shù)為40,再求女生的人數(shù);(2)完成列聯(lián)表,再利用獨立性檢驗求出有的把握認(rèn)為身高與性別有關(guān);(3)利用古典概型的概率公式求出2人中恰好有一名女生的概率.
(1)直方圖中,因為身高在的男生的頻率為0.4,
設(shè)男生數(shù)為,則,得.
由男生的人數(shù)為40,得女生的人數(shù)為.
(2)男生身高的人數(shù),
女生身高的人數(shù),
所以可得到下列列聯(lián)表:
總計 | ||||
男生身高 | 30 | 10 | 40 | |
女生身高 | 6 | 54 | 60 | |
總計 | 36 | 64 | 100 |
,
所以能有的把握認(rèn)為身高與性別有關(guān);
(3)在之間的男生有12人,在之間的女生人數(shù)有6人.
按分層抽樣的方法抽出6人,則男生占4人,女生占2人.
設(shè)男生為,,,,女生為,.
從6人任選2名有:,,,,,,,,,,,,,,共15種可能,
2人中恰好有一名女生:,,,,,,,共8種可能,
故所求概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),m∈R
(1)討論f(x)的單調(diào)性;
(2)若m∈(-1,0),證明:對任意的x1,x2∈[1,1-m],4f(x1)+x2<5.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系中,過點的直線l的參數(shù)方程為 (t為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為與曲線C相交于不同的兩點M,N.
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】個人排成一排,在下列情況下,各有多少種不同排法?
(1)甲不在兩端;
(2)甲、乙、丙三個必須在一起;
(3)甲、乙必須在一起,且甲、乙都不能與丙相鄰.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面上一動點P到定點C(1,0)的距離與它到直線的距離之比為.
(1)求點P的軌跡方程;
(2)點O是坐標(biāo)原點,A,B兩點在點P的軌跡上,F是點C關(guān)于原點的對稱點,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的直徑AB=3,點C為⊙O上異于A,B的一點,平面ABC,且,點M為線段VB的中點.
(1)求證:平面VAC;
(2)若AB與平面VAC所成角的余弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】謝爾賓斯基三角形(Sierpinski triangle)是一種分形,由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出.在一個正三角形中,挖去一個“中心三角形”(即以原三角形各邊的中點為頂點的三角形),然后在剩下的小三角形中又挖去一個“中心三角形”,我們用白色三角形代表挖去的部分,黑色三角形為剩下的部分,我們稱此三角形為謝爾賓斯基三角形.若在圖(3)內(nèi)隨機取一點,則此點取自謝爾賓斯基三角形的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(kx+)ex﹣2x,若f(x)<0的解集中有且只有一個正整數(shù),則實數(shù)k的取值范圍為 ( )
A. [ ,)B. (,]
C. [)D. [)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分,(1)小問5分,(2)小問7分)
如圖,橢圓的左、右焦點分別為過的直線交橢圓于兩點,且
(1)若,求橢圓的標(biāo)準(zhǔn)方程
(2)若求橢圓的離心率
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com