15.正項(xiàng)等比數(shù)列{an}滿足:2a4+a3=2a2+a1+8,則2a6+a5的最小值是(  )
A.64B.32C.16D.8

分析 設(shè)正項(xiàng)等比數(shù)列{an}的公比q>0,由2a4+a3=2a2+a1+8,可得(2a2+a1)(q2-1)=8.(q≠1).則2a6+a5=q4(2a2+a1)=8(q2-1)+$\frac{8}{{q}^{2}-1}$+16=f(q),通過對(duì)q分類討論,利用基本不等式的性質(zhì)即可得出.

解答 解:設(shè)正項(xiàng)等比數(shù)列{an}的公比q>0,
∵2a4+a3=2a2+a1+8,
∴(2a2+a1)(q2-1)=8.(q≠1).
則2a6+a5=q4(2a2+a1)=$\frac{8{q}^{4}}{{q}^{2}-1}$=8(q2+1)+$\frac{8}{{q}^{2}-1}$=8(q2-1)+$\frac{8}{{q}^{2}-1}$+16=f(q),
q>1時(shí),f(q)≥$8×2\sqrt{({q}^{2}-1)×\frac{1}{{q}^{2}-1}}$+16=32,當(dāng)且僅當(dāng)$q=\sqrt{2}$時(shí)取等號(hào).
0<q<1時(shí),f(q)=-$8[(1-{q}^{2})+\frac{1}{1-{q}^{2}}]$+16≤0,舍去.
綜上可得:2a6+a5的最小值是32.
故選:B.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式及其性質(zhì)、基本不等式的性質(zhì),考查了分類討論方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在平面直角坐標(biāo)系內(nèi),點(diǎn)A(1,2),B(1,3),C(3,6),則三角形ABC面積為1;三角形ABC外接圓標(biāo)準(zhǔn)方程為$(x-5)^{2}+(y-\frac{5}{2})^{2}=\frac{65}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(tanα)=sin2α+cos2α,則函數(shù)f(x)的值域?yàn)閇-$\sqrt{2}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在平面直角坐標(biāo)xOy中,已知點(diǎn)A(1,0),B(4,0),若滿足條件|PA|=$\frac{1}{2}$|PB|,則動(dòng)點(diǎn)P的軌跡方程為x2+y2=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知:點(diǎn)B(-2,0),C(2,0),動(dòng)點(diǎn)M滿足kMB•kMC=1.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)過點(diǎn)M分別作直線y=x與y=-x的平行線交兩直線于P、Q,求證:平行四邊形OPMQ的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知α∈(0,$\frac{π}{2}$),若cos(α+$\frac{π}{6}$)=$\frac{4}{5}$,則tan(2α+$\frac{π}{12}$)=$\frac{17}{31}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,RT△ABC中,AB=AC,BC=4,O為BC的中點(diǎn),以O(shè)為圓心,1為半徑的半圓與BC交于點(diǎn)D,P為半圓上任意一點(diǎn),則$\overrightarrow{BP}$•$\overrightarrow{AD}$的最小值為(  )
A.2+$\sqrt{5}$B.$\sqrt{5}$C.2D.2-$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.某校為了調(diào)查高三年級(jí)參加某項(xiàng)戶外活動(dòng)的文科生和理科生的參與情況,用簡單隨機(jī)抽樣,從報(bào)名參加活動(dòng)的所有學(xué)生中抽取60名學(xué)生,已知每位學(xué)生被抽取的概率為0.05.若按文科生和理科生兩部分采取分層抽樣,共抽取30名學(xué)生,其中24名是理科生,則報(bào)名參加活動(dòng)的文科生共有240人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若變量x,y滿足約束條件$\left\{\begin{array}{l}{y≥x}\\{y≤1-x}\\{3x≥y}{\;}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+4y的最大值為$\frac{7}{2}$.

查看答案和解析>>

同步練習(xí)冊答案