【題目】設(shè)是同一球面上的四點,
是邊長為6的等邊三角形,若三棱錐
體積的最大值為
,則該球的表面積為( )
A. B.
C.
D.
【答案】A
【解析】
作出圖形由圖知,當(dāng)點D與球心O以及△ABC外接圓圓心三點共線且D與△ABC外接圓圓心位于球心的異側(cè)時,三棱錐D﹣ABC的體積取得最大值,結(jié)合三棱錐的體積求出棱錐的h,然后利用勾股定理求球O的半徑R,最后利用表面積公式可求出答案.
如圖所示,
由題意可知,設(shè)點M為△ABC外接圓的圓心,當(dāng)點D、O、M三點共線時,且D、M分別位于點O的異側(cè)時,三棱錐D﹣ABC的體積取得最大值,
△ABC的面積為,
由于三棱錐D﹣ABC的體積的最大值為,得DM=6,
易知DM⊥平面ABC,則三棱錐D﹣ABC為正三棱錐,△ABC的外接圓直徑為2AM=,∴AM=2
,設(shè)球O的半徑為為R,在直角三角形AOM中,
由勾股定理得,即
,解得R=4或R=6(舍去)
因此,球O的表面積為.
故選:A.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓:
, 其左右焦點為
及
,過點
的直線交橢圓
于
兩點,線段
的中點為
,
的中垂線與
軸和
軸分別交于
兩點,且
、
、
構(gòu)成等差數(shù)列.
(1)求橢圓的方程;
(2)記的面積為
,
(
為原點)的面積為
,試問:是否存在直線
,使得
?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)對一切實數(shù)
,都有
成立,且
,
,
.
(1)求的解析式;
(2)記函數(shù)在
上的最大值為
,最小值為
,若
,當(dāng)
時,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐中,
平面
,底面
為菱形,
,
是
中點,
是
的中點,
是
上的點.
(Ⅰ)求證:平面平面
;
(Ⅱ)當(dāng)是
中點,且
時,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐的底面
是梯形,
,
,
,
,
在棱
上且
.
(1)證明:平面
;
(2)若平面
,異面直線
與
所成角的余弦值為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解我市參加2018年全國高中數(shù)學(xué)聯(lián)賽的學(xué)生考試結(jié)果情況,從中選取60名同學(xué)將其成績(百分制,均為正數(shù))分成六組后,得到部分頻率分布直方圖(如圖),觀察圖形,回答下列問題:
(1)求分?jǐn)?shù)在內(nèi)的頻率,并補全這個頻率分布直方圖;
(2)根據(jù)頻率分布直方圖,估計本次考試成績的眾數(shù)、均值;
(3)根據(jù)評獎規(guī)則,排名靠前10%的同學(xué)可以獲獎,請你估計獲獎的同學(xué)至少需要所少分?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com