分析 由條件配方,取常用對數,運用等比數列可得an=2${\;}^{{2}^{n-1}}$-1,求出bn=$\frac{1}{{2}^{{2}^{n-1}}-1}$-$\frac{1}{{2}^{{2}^{n}}-1}$,運用數列的求和方法:裂項相消求和,計算即可得到所求和.
解答 解:a1=1,an=an-12+2an-1(n≥2),
即有an+1=an-12+2an-1+1=(an-1+1)2,
兩邊取常用對數,可得lg(an+1)=lg(an-1+1)2=2lg(an-1+1),
可得lg(an+1)=lg2•2n-1,
可得an=2${\;}^{{2}^{n-1}}$-1,
則bn=$\frac{1}{{{a_{n+1}}}}+\frac{1}{{{a_n}+2}}$=$\frac{1}{{2}^{{2}^{n}}-1}$+$\frac{1}{{2}^{{2}^{n-1}}+1}$=$\frac{1}{({2}^{{2}^{n-1}}-1)({2}^{{2}^{n-1}}+1)}$+$\frac{1}{{2}^{{2}^{n-1}}+1}$
=$\frac{1}{{2}^{{2}^{n-1}}-1}$-$\frac{1}{{2}^{{2}^{n}}-1}$,
則Sn=b1+…+bn═1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{15}$+$\frac{1}{15}$-$\frac{1}{255}$+…+$\frac{1}{{2}^{{2}^{n-1}}-1}$-$\frac{1}{{2}^{{2}^{n}}-1}$
=1-$\frac{1}{{2}^{{2}^{n}}-1}$.
故答案為:1-$\frac{1}{{2}^{{2}^{n}}-1}$.
點評 本題考查數列的通項公式的求法,注意運用取對數,考查數列的求和方法:裂項相消求和,考查化簡整理的運算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $(4,6+4\sqrt{2})$ | B. | $(4,6+4\sqrt{2}]$ | C. | $[6+4\sqrt{2},+∞)$ | D. | $(6+4\sqrt{2},+∞)$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [-1,3) | B. | [0,3) | C. | [1,3) | D. | (1,3) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $y=10sin(\frac{π}{8}x+\frac{3π}{4})+20$,x∈[6,14] | B. | $y=10sin(\frac{π}{8}x+\frac{5π}{4})+20$,x∈[6,14] | ||
C. | $y=10sin(\frac{π}{8}x-\frac{3π}{4})+20$,x∈[6,14] | D. | $y=10sin(\frac{π}{8}x+\frac{5π}{8})+20$,x∈[6,14] |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{12}$ | C. | $\frac{5}{36}$ | D. | $\frac{5}{18}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 15 | B. | 17 | C. | 19 | D. | 21 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com