函數(shù)f(x)=log4(2x2-7x+6)的單調(diào)遞增區(qū)間是
 
考點:復(fù)合函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令t=2x2-7x+6>0,求得函數(shù)f(x)的定義域,根據(jù)f(x)=log4t,本題即求函數(shù)t在定義域內(nèi)的增區(qū)間,再利用二次函數(shù)的性質(zhì)可得函數(shù)t在定義域內(nèi)的增區(qū)間.
解答: 解:令t=2x2-7x+6>0,求得x<
3
2
,x>2,
故函數(shù)f(x)的定義域為{x|x<
3
2
,x>2},且f(x)=log4t,
故本題即求二次函數(shù)t在定義域內(nèi)的增區(qū)間.
再利用二次函數(shù)的性質(zhì)可得函數(shù)t在定義域內(nèi)的增區(qū)間為(2,+∞),
故答案為:(2,+∞).
點評:本題主要考查復(fù)合函數(shù)的單調(diào)性,對數(shù)函數(shù)、二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若某幾何體的三視圖 (單位:cm) 如圖所示,則此幾何體的體積是( 。ヽm3
A、πB、2πC、3πD、4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
b
>1的一個充分不必要條件是( 。
A、a>bB、a>b>0
C、a<bD、b<a<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列不等式的解集:
(1)x2-3x-10>0
(2)
x-6
x+1
≥2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有6道題,其中4道甲類題,2道乙類題,張同學(xué)從中任取2道題解答.請列出基本事件結(jié)果,試求:
(1)所取的2道題都是甲類題的概率;
(2)所取的2道題不是同一類題的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

向量
.
a
,
.
b
的夾角為60°,且|
.
a
|=1,|
.
b
|=2,則向量
.
b
在向量
.
a
方向上的投影為( 。
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(sinθ,-2)與
b
=(1,cosθ)互相垂直,其中θ∈(0,
π
2
).
(1)求sinθ 和cosθ的值;
(2)求函數(shù)f(x)=cos2x+2sinx的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),若f(x)>f(2-x),則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)在定義域內(nèi)為增函數(shù)且是奇函數(shù)的是(  )
A、f(x)=sinx
B、f(x)=x3
C、f(x)=2x2+1
D、f(x)=2x+1

查看答案和解析>>

同步練習(xí)冊答案