【題目】如圖,四棱錐中,,平面底面,中點(diǎn).

1)證明:直線平面;

2)點(diǎn)為線段的中點(diǎn),求二面角的大小.

【答案】1)證明見(jiàn)解析;(2.

【解析】

1)取中點(diǎn),連接,,證出,利用線面平行的判定定理即可證出.

2)不妨設(shè),則,取中點(diǎn),得,以為原點(diǎn),以軸,建立空間直角坐標(biāo)系,求出平面的一個(gè)法向量與平面的一個(gè)法向量,利用空間向量的數(shù)量積即可求解.

證明:(1)如圖,取中點(diǎn),連接,

因?yàn)?/span>中位線,

所以,

又因?yàn)?/span>,

所以

所以四邊形為平行四邊形,所以

又因?yàn)?/span>平面,平面,

所以平面.

2)不妨設(shè),則,,取中點(diǎn),

所以,

又因?yàn)?/span>,,

所以四邊形為矩形,

所以,

平面平面,所以平面,

,

又因?yàn)槿切?/span>為正三角形,

所以,

故如圖建立空間直角坐標(biāo)系

可得,,,,

所以,,

設(shè)平面的一個(gè)法向量為,則,可取,

易知平面的一個(gè)法向量,

所以,又知二面角為銳角,

則二面角的大小為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著移動(dòng)互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機(jī)APP軟件層出不窮.現(xiàn)從某市使用A和B兩款訂餐軟件的商家中分別隨機(jī)抽取100個(gè)商家,對(duì)它們的“平均送達(dá)時(shí)間”進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖如下.

(1)已知抽取的100個(gè)使用A款訂餐軟件的商家中,甲商家的“平均送達(dá)時(shí)間”為18分鐘,F(xiàn)從使用A款訂餐軟件的商家中“平均送達(dá)時(shí)間”不超過(guò)20分鐘的商家中隨機(jī)抽取3個(gè)商家進(jìn)行市場(chǎng)調(diào)研,求甲商家被抽到的概率;

(2)試估計(jì)該市使用A款訂餐軟件的商家的“平均送達(dá)時(shí)間”的眾數(shù)及平均數(shù);

(3)如果以“平均送達(dá)時(shí)間”的平均數(shù)作為決策依據(jù),從A和B兩款訂餐軟件中選擇一款訂餐,你會(huì)選擇哪款?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以昆明、玉溪為中心的滇中地區(qū),冬無(wú)嚴(yán)寒、夏無(wú)酷暑,世界上主要的鮮切花品種在這里都能實(shí)現(xiàn)周年規(guī);a(chǎn).某鮮花批發(fā)店每天早晨以每支2元的價(jià)格從鮮切花生產(chǎn)基地購(gòu)入某種玫瑰,經(jīng)過(guò)保鮮加工后全部裝箱(每箱500支,平均每支玫瑰的保鮮加工成本為1元),然后以每箱2000元的價(jià)格整箱出售.由于鮮花的保鮮特點(diǎn),制定了如下促銷策略:若每天下午3點(diǎn)以前所購(gòu)進(jìn)的玫瑰沒(méi)有售完,則對(duì)未售出的玫瑰以每箱1200元的價(jià)格降價(jià)處理.根據(jù)經(jīng)驗(yàn),降價(jià)后能夠把剩余玫瑰全部處理完畢,且當(dāng)天不再購(gòu)進(jìn)該種玫瑰,由于庫(kù)房限制每天最多加工6.

1)若某天該鮮花批發(fā)店購(gòu)入并加工了6箱該種玫瑰,在下午3點(diǎn)以前售出4箱,且被6位不同的顧客購(gòu)買.現(xiàn)從這6位顧客中隨機(jī)選取2人贈(zèng)送優(yōu)惠卡,則恰好一位是以2000元價(jià)格購(gòu)買的顧客,另一位是以1200元價(jià)格購(gòu)買的顧客的概率是多少?

2)該鮮花批發(fā)店統(tǒng)計(jì)了100天內(nèi)該種玫瑰在每天下午3點(diǎn)以前的銷售量(單位:箱),統(tǒng)計(jì)結(jié)果如下表所示(視頻率為概率):

/

4

5

6

頻數(shù)

30

①估計(jì)接下來(lái)的一個(gè)月(30天)內(nèi)該種玫瑰每天下午3點(diǎn)以前的銷售量不少于5箱的天數(shù)是多少?

②若批發(fā)店每天在購(gòu)進(jìn)5箱數(shù)量的玫瑰時(shí)所獲得的平均利潤(rùn)最大(不考慮其他成本),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的一個(gè)頂點(diǎn)與拋物線的焦點(diǎn)重合,分別是橢圓的左、右焦點(diǎn),離心率,過(guò)橢圓右焦點(diǎn)的直線與橢圓交于,兩點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存在直線,使得,若存在,求出直線的方程;若不存在,說(shuō)明理由;

(Ⅲ)設(shè)點(diǎn)是一個(gè)動(dòng)點(diǎn),若直線的斜率存在,且中點(diǎn),,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近幾年來(lái)我國(guó)電子商務(wù)行業(yè)發(fā)展迅猛,2016年元旦期間,某購(gòu)物平臺(tái)的銷售業(yè)績(jī)高達(dá)918億人民幣,與此同時(shí),相關(guān)管理部門推出了針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系,現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為0.6,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80.

1)完成商品和服務(wù)評(píng)價(jià)的列聯(lián)表,并說(shuō)明是否可以在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?

2)若將頻率視為概率,某人在該購(gòu)物平臺(tái)上進(jìn)行的5次購(gòu)物中,設(shè)對(duì)商品和服務(wù)全好評(píng)的次數(shù)為隨機(jī)變量.

①求對(duì)商品和服務(wù)全好評(píng)的次數(shù)的分布列(概率用組合數(shù)算式表示);

②求的數(shù)學(xué)期望和方差.

參考數(shù)據(jù)及公式如下:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形中,,過(guò)點(diǎn)于點(diǎn),以為折痕把折起,當(dāng)幾何體的的體積最大時(shí),則下列命題中正確的個(gè)數(shù)是( )

∥平面

與平面所成的角等于與平面所成的角

所成的角等于所成的角

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)在區(qū)間上的單調(diào)性;

(2)已知函數(shù),若,且函數(shù)在區(qū)間內(nèi)有零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】沙漏是古代的一種計(jì)時(shí)裝置,它由兩個(gè)形狀完全相同的容器和一個(gè)狹窄的連接管道組成,開(kāi)始時(shí)細(xì)沙全部在上部容器中,細(xì)沙通過(guò)連接管道全部流到下部容器所需要的時(shí)間稱為該沙漏的一個(gè)沙時(shí).如圖,某沙漏由上下兩個(gè)圓錐組成,圓錐的底面直徑和高均為8cm,細(xì)沙全部在上部時(shí),其高度為圓錐高度的(細(xì)管長(zhǎng)度忽略不計(jì)).假設(shè)該沙漏每秒鐘漏下的沙,且細(xì)沙全部漏入下部后,恰好堆成一個(gè)蓋住沙漏底部的圓錐形沙堆.以下結(jié)論正確的是(

A.沙漏中的細(xì)沙體積為

B.沙漏的體積是

C.細(xì)沙全部漏入下部后此錐形沙堆的高度約為2.4cm

D.該沙漏的一個(gè)沙時(shí)大約是1985秒(

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知由nnN*)個(gè)正整數(shù)構(gòu)成的集合A{a1,a2,,an}a1a2an,n≥3),記SAa1+a2+…+an,對(duì)于任意不大于SA的正整數(shù)m,均存在集合A的一個(gè)子集,使得該子集的所有元素之和等于m.

1)求a1,a2的值;

2)求證:a1,a2,,an成等差數(shù)列的充要條件是;

3)若SA2020,求n的最小值,并指出n取最小值時(shí)an的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案