16.如圖,設(shè)橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),長(zhǎng)軸的右端點(diǎn)與拋物線C2:y2=8x的焦點(diǎn)F重合,且橢圓C1的離心率是$\frac{\sqrt{3}}{2}$.
(1)求橢圓C1的標(biāo)準(zhǔn)方程;
(2)過(guò)F作直線l交拋物線C2于A,B兩點(diǎn),過(guò)F且與直線l垂直的直線交橢圓C1于另一點(diǎn)C,求△ABC面積的最小值,以及取到最小值時(shí)直線l的方程.

分析 (1)由已知可得a,又由橢圓C1的離心率得c,b=1即可.
(2)過(guò)點(diǎn)F(2,0)的直線l的方程設(shè)為:x=my+2,設(shè)A(x1,y1),B(x2,y2)聯(lián)立$\left\{\begin{array}{l}{x=my+2}\\{{y}^{2}=8x}\end{array}\right.$得y2-8my-16=0.|AB|=$\sqrt{1+{m}^{2}}\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$,同理得|CF|=$\sqrt{1+{m}^{2}}|{x}_{c}-{x}_{F}|=\frac{4}{4{m}^{2}+1}$•$\sqrt{1+{m}^{2}}$.△ABC面積s=$\frac{1}{2}$|AB|•|CF|=$\frac{16(1+{m}^{2})}{4{m}^{2}+1}•\sqrt{1+{m}^{2}}$.令$\sqrt{1+{m}^{2}}=t\\;(t≥1)$,則s=f(t)=$\frac{16{t}^{3}}{4{t}^{2}-3}$,利用導(dǎo)數(shù)求最值即可.

解答 解:(1)∵橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),長(zhǎng)軸的右端點(diǎn)與拋物線C2:y2=8x的焦點(diǎn)F重合,∴a=2,
又∵橢圓C1的離心率是$\frac{\sqrt{3}}{2}$.∴c=$\sqrt{3}$,⇒b=1,∴橢圓C1的標(biāo)準(zhǔn)方程:$\frac{{x}^{2}}{4}+{y}^{2}=1$.
(2)過(guò)點(diǎn)F(2,0)的直線l的方程設(shè)為:x=my+2,設(shè)A(x1,y1),B(x2,y2
聯(lián)立$\left\{\begin{array}{l}{x=my+2}\\{{y}^{2}=8x}\end{array}\right.$得y2-8my-16=0.
y1+y2=8m,y1y2=-16,∴|AB|=$\sqrt{1+{m}^{2}}\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=8(1+m2
 過(guò)F且與直線l垂直的直線設(shè)為:y=-m(x-2)
聯(lián)立$\left\{\begin{array}{l}{y=-m(x-2)}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$ 得(1+4m2)x2-16m2x+16m2-4=0,
xC+2=$\frac{16{m}^{2}}{1+4{m}^{2}}$,⇒xC=$\frac{2(4{m}^{2}-1)}{4{m}^{2}+1}$.
∴|CF|=$\sqrt{1+{m}^{2}}|{x}_{c}-{x}_{F}|=\frac{4}{4{m}^{2}+1}$•$\sqrt{1+{m}^{2}}$.
△ABC面積s=$\frac{1}{2}$|AB|•|CF|=$\frac{16(1+{m}^{2})}{4{m}^{2}+1}•\sqrt{1+{m}^{2}}$.
令$\sqrt{1+{m}^{2}}=t\\;(t≥1)$,則s=f(t)=$\frac{16{t}^{3}}{4{t}^{2}-3}$,f′(t)=$\frac{16(4{t}^{4}-9{t}^{2})}{(4{t}^{2}-3)^{2}}$,
令f′(t)=0,則t2=$\frac{9}{4}$,即1+m2=$\frac{9}{4}$時(shí),△ABC面積最小.
即當(dāng)m=±$\frac{\sqrt{5}}{2}$時(shí),△ABC面積的最小值為9,此時(shí)直線l的方程為:x=±$\frac{\sqrt{5}}{2}$y+2.

點(diǎn)評(píng) 本題考查了直線與橢圓、拋物線的位置關(guān)系,考查了運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在正方體ABCD-A1B1C1D1中,E,F(xiàn),G分別為A1B1,BB1,B1C1的中點(diǎn),則AC1
與D1E所成角的余弦值為$\frac{\sqrt{15}}{30}$,AC1與平面EFG所成角的正弦值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知$\left\{{\overrightarrow a,\overrightarrow b,\overrightarrow c}\right\}$是空間的一個(gè)基底,$\left\{{\overrightarrow a+\overrightarrow b,\overrightarrow a-\overrightarrow b,\overrightarrow c}\right\}$是空間的另一個(gè)基底.若向量$\overrightarrow p$在基底$\left\{{\overrightarrow a,\overrightarrow b,\overrightarrow c}\right\}$下的坐標(biāo)為(3,5,7),則$\overrightarrow p$在基底$\left\{{\overrightarrow a+\overrightarrow b,\overrightarrow a-\overrightarrow b,\overrightarrow c}\right\}$下的坐標(biāo)是( 。
A.(4,-2,7)B.(4,-1,7)C.(3,-1,7)D.(3,-2,7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列函數(shù)中,在R上單調(diào)遞增的是( 。
A.y=-xB.y=log3xC.$y={x^{\frac{1}{3}}}$D.y=($\frac{1}{2}$)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若冪函數(shù)f(x)的圖象經(jīng)過(guò)(-$\sqrt{2}$,2),則f(4)=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列關(guān)于零向量的說(shuō)法不正確的是(  )
A.零向量是沒(méi)有方向的向量B.零向量的方向是任意的
C.零向量與任一向量共線D.零向量只能與零向量相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,四邊形ABCD是平行四邊形,平面AED⊥平面ABCD,EF∥AB,$BC=EF=\frac{1}{2}AB$,∠BAD=60°,G為BC的中點(diǎn).
(Ⅰ)求證:FG∥平面BED;
(Ⅱ)求證:平面BED⊥平面AED.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.據(jù)統(tǒng)計(jì),我國(guó)每年交通事故死亡人數(shù)已經(jīng)超過(guò)了10萬(wàn)人,我國(guó)汽車(chē)保有量不到全世界2%,但是交通事故死亡人數(shù)則占全球的20%,其中一個(gè)很重要的原因是國(guó)內(nèi)很多駕駛員沒(méi)有養(yǎng)成正確的駕駛習(xí)慣,沒(méi)掌握事故發(fā)生前后正確的操作方法.某地交通管理部門(mén)從當(dāng)?shù)啬绸{校當(dāng)期一班、二班學(xué)員中各隨機(jī)抽取9名學(xué)員參加交通法規(guī)知識(shí)抽測(cè),測(cè)試成績(jī)繪制的莖葉圖如下,其中有一個(gè)成績(jī)模糊,用x表示.
(Ⅰ)平均抽測(cè)的一班、二班學(xué)員的平均分相同,求x的值,并寫(xiě)出這個(gè)平均分;
(Ⅱ)若在參加測(cè)試的成績(jī)不低于90分分學(xué)員中任取兩人,求這兩個(gè)來(lái)自同一班的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x≥-1\\ x-y≥1\\ x-2y+1≤0\end{array}\right.$,則x+y的最小值是5.

查看答案和解析>>

同步練習(xí)冊(cè)答案