【題目】下列函數(shù)在區(qū)間(0,π)上為減函數(shù)的是( )
A.y=(x﹣3)2
B.y=sinx
C.y=cosx
D.y=tanx
【答案】C
【解析】解:A中,y=(x﹣3)2在(﹣∞,3)上是減函數(shù),在(3,+∞)上是增函數(shù),∴不滿足條件; B中,y=sinx在( +2kπ, +2kπ)(k∈Z)上是減函數(shù),在(﹣ +2kπ, +2kπ)(k∈Z)上是增函數(shù),∴不滿足條件;
C中,y=cosx在(2kπ,π+2kπ)(k∈Z)上是減函數(shù),在(﹣π+2kπ,2kπ)(k∈Z)上是增函數(shù);
當k=0時,函數(shù)在區(qū)間(0,π)上是減函數(shù),∴滿足條件;
D中,y=tanx在(﹣ +kπ, +kπ)(k∈Z)上是增函數(shù),∴不滿足條件;
故選:C.
【考點精析】解答此題的關鍵在于理解函數(shù)單調(diào)性的判斷方法的相關知識,掌握單調(diào)性的判定法:①設x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l過點M(1,2),且直線l與x軸正半軸和y軸的正半軸交點分別是A、B,(如圖,注意直線l與坐標軸的交點都在正半軸上)
(1)若三角形AOB的面積是4,求直線l的方程.
(2)求過點N(0,1)且與直線l垂直的直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)為了對新研發(fā)的一批產(chǎn)品進行合理定價,將產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:
已知
(1)求的值
(2)已知變量具有線性相關性,求產(chǎn)品銷量關于試銷單價的線性回歸方程 可供選擇的數(shù)據(jù)
(3)用表示(2)中所求的線性回歸方程得到的與對應的產(chǎn)品銷量的估計值。當銷售數(shù)據(jù)對應的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”。試求這6組銷售數(shù)據(jù)中的 “好數(shù)據(jù)”。
參考數(shù)據(jù):線性回歸方程中的最小二乘估計分別是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,A(a,0)(a>0),B(0,a),C(﹣4,0),D(0,4)設△AOB的外接圓圓心為E.
(1)若⊙E與直線CD相切,求實數(shù)a的值;
(2)設點P在圓E上,使△PCD的面積等于12的點P有且只有三個,試問這樣的⊙E是否存在,若存在,求出⊙E的標準方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,△ABC是等邊三角形,D是AC的中點,PA=PC,二面角P﹣AC﹣B的大小為60°;
(1)求證:平面PBD⊥平面PAC;
(2)求AB與平面PAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四棱錐的側棱PD⊥底面ABCD,且底面ABCD是直角梯形,AD⊥CD,AB∥CD,AB=AD= CD=2,點M在側棱上.
(1)求證:BC⊥平面BDP;
(2)若側棱PC與底面ABCD所成角的正切值為 ,點M為側棱PC的中點,求異面直線BM與PA所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,g(x)=xlnx﹣a(x﹣1).
(1)求函數(shù)f(x)在點(4,f(4))處的切線方程;
(2)若對任意x∈(0,+∞),不等式g(x)≥0恒成立,求實數(shù)a的取值的集合M;
(3)當a∈M時,討論函數(shù)h(x)=f(x)﹣g(x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國古代數(shù)學名著《九章算術》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應償還多少?已知牛、馬、羊的主人各應償還升, 升, 升,1斗為10升,則下列判斷正確的是( )
A. , , 依次成公比為2的等比數(shù)列,且
B. , , 依次成公比為2的等比數(shù)列,且
C. , , 依次成公比為的等比數(shù)列,且
D. , , 依次成公比為的等比數(shù)列,且
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對一批產(chǎn)品的長度(單位:毫米)進行抽樣檢測,如圖為檢測結果的頻率分布直方圖.根據(jù)標準,產(chǎn)品長度在區(qū)間[20,25)上為一等品,在區(qū)間[15,20)和[25,30)上為二等品,在區(qū)間[10,15)和[30,35]上為三等品.用頻率估計概率,現(xiàn)從該批產(chǎn)品中隨機抽取1件,則其為二等品的概率是( )
A.0.09
B.0.20
C.0.25
D.0.45
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com