【題目】如圖,已知四棱錐中,底面為直角梯形,,,,平面,,分別是,的中點(diǎn).
(1)證明:;
(2)若,求點(diǎn)到平面的距離.
【答案】(1)證明見詳解;(2)
【解析】
(1)先證明直線AE垂直于平面PAD,再由線面垂直證明線線垂直;
(2)根據(jù)等體積法,將問題轉(zhuǎn)化為求解三棱錐的體積即可.
(1)因?yàn)?/span>E為BC中點(diǎn),且,故AD=EC,又AD//EC,
故四邊形AECD為平行四邊形,故AE//CD,又CD,
故AEAD;
因?yàn)?/span>PA底面ABCD,AE平面ABCD,故PAAE
又AD平面PAD,PA平面PAD,
故AE平面PAD,又PD平面PAD
故AEPD.即證.
(2)在中,AF為斜邊上的中線,又因?yàn)?/span>PA=AB=2,且PAAB
故可得:AF=;
在中,因?yàn)?/span>AB=2,BE=1,且AEBE,故可得AE=
故可得
在中,因?yàn)?/span>PA=2=AC,且PA,故可得PC=
在中,因?yàn)?/span>EF分別為兩邊的中點(diǎn),故EF=
故由余弦定理可得,則.
故.
又因?yàn)?/span>F為PB的中點(diǎn),且PA平面ABCD,
故F點(diǎn)到平面ABCD的距離為
設(shè)點(diǎn)C到平面AEF的距離為,
根據(jù),即
解得.
故點(diǎn)到平面的距離為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某民航部門統(tǒng)計(jì)的2019年春運(yùn)期間12個城市售出的往返機(jī)票的平均價(jià)格以及相比上年同期變化幅度的數(shù)據(jù)統(tǒng)計(jì)圖表如圖所示,根據(jù)圖表,下面敘述不正確的是( )
A. 同去年相比,深圳的變化幅度最小且廈門的平均價(jià)格有所上升
B. 天津的平均價(jià)格同去年相比漲幅最大且2019年北京的平均價(jià)格最高
C. 2019年平均價(jià)格從高到低居于前三位的城市為北京、深圳、廣州
D. 同去年相比,平均價(jià)格的漲幅從高到低居于前三位的城市為天津、西安、南京
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點(diǎn),離心率為,過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),
(1)求橢圓的方程;
(2)求的取值范圍;
(3)設(shè)直線和的斜率分別為和,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知a=2,c=3,又知bsinA=acos(B).
(Ⅰ)求角B的大小、b邊的長:
(Ⅱ)求sin(2A﹣B)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過多年的努力,炎陵黃桃在國內(nèi)乃至國際上逐漸打開了銷路,成為炎陵部分農(nóng)民脫貧致富的好產(chǎn)品.為了更好地銷售,現(xiàn)從某村的黃桃樹上隨機(jī)摘下了100個黃桃進(jìn)行測重,其質(zhì)量分布在區(qū)間內(nèi)(單位:克),統(tǒng)計(jì)質(zhì)量的數(shù)據(jù)作出其頻率分布直方圖如圖所示:
(1)按分層抽樣的方法從質(zhì)量落在,的黃桃中隨機(jī)抽取5個,再從這5個黃桃中隨機(jī)抽2個,求這2個黃桃質(zhì)量至少有一個不小于400克的概率;
(2)以各組數(shù)據(jù)的中間數(shù)值代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該村的黃桃樹上大約還有100000個黃桃待出售,某電商提出兩種收購方案:
A.所有黃桃均以20元/千克收購;
B.低于350克的黃桃以5元/個收購,高于或等于350克的以9元/個收購.
請你通過計(jì)算為該村選擇收益最好的方案.
(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某水果種植基地引進(jìn)一種新水果品種,經(jīng)研究發(fā)現(xiàn)該水果每株的產(chǎn)量(單位:)和與它“相近”的株數(shù)具有線性相關(guān)關(guān)系(兩株作物“相近”是指它們的直線距離不超過),并分別記錄了相近株數(shù)為0,1,2,3,4時每株產(chǎn)量的相關(guān)數(shù)據(jù)如下:
0 | 1 | 2 | 3 | 4 | |
15 | 12 | 11 | 9 | 8 |
(1)求出該種水果每株的產(chǎn)量關(guān)于它“相近”株數(shù)的回歸方程;
(2)有一種植戶準(zhǔn)備種植該種水果500株,且每株與它“相近”的株數(shù)都為,計(jì)劃收獲后能全部售出,價(jià)格為10元,如果收入(收入=產(chǎn)量×價(jià)格)不低于25000元,則的最大值是多少?
(3)該種植基地在如圖所示的直角梯形地塊的每個交叉點(diǎn)(直線的交點(diǎn))處都種了一株該種水果,其中每個小正方形的邊長和直角三角形的直角邊長都為,已知該梯形地塊周邊無其他樹木影響,若從所種的該水果中隨機(jī)選取一株,試根據(jù)(1)中的回歸方程,預(yù)測它的產(chǎn)量的分布列與數(shù)學(xué)期望.
附:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為自然對數(shù)的底數(shù).
(1)當(dāng)時,證明,,;
(2)若函數(shù)在上存在極值點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直角梯形中,,,,四邊形為矩形,.
(1)求證:平面平面;
(2)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com