【題目】ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知a2,c3,又知bsinAacosB).

(Ⅰ)求角B的大小、b邊的長:

(Ⅱ)求sin2AB)的值.

【答案】(Ⅰ)Bb;(Ⅱ)

【解析】

1)將已知條件利用余弦的差角公式展開,再利用正弦定理將邊化角,整理后得到角,再利用余弦定理,求得邊即可;

2)由(1)中所求,結(jié)合正弦定理,即可求得,再利用正弦的差角公式以及倍角公式展開代值計算即可.

(Ⅰ)∵bsinAacosB).∴bsinAacosBsinB),

∴由正弦定理可得sinBsinAsinAcosBsinB),∵sinA≠0

sinBsinAsinAcosBsinB),可得sinB)=0,

B∈(0,π),B∈(,),

B0,可得B

a2,c3,

∴由余弦定理可得

b

(Ⅱ)∵B,a2b.∴由正弦定理,

可得sinAcosA,

sin2A2sinAcosA,cos2A2cos2A1,

sin2AB)=sin2AcosBcos2AsinB

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定整數(shù)(),設(shè)集合,記集合

(1)若,求集合;

(2)若構(gòu)成以為首項,()為公差的等差數(shù)列,求證:集合中的元素個數(shù)為;

(3)若構(gòu)成以為首項,為公比的等比數(shù)列,求集合中元素的個數(shù)及所有元素之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),,若存在,使,則稱,是函數(shù)的一對“雷點”.已知,若函數(shù)恰有一個“雷點”,則實數(shù)的取值范圍為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】人耳的聽力情況可以用電子測聽器檢測,正常人聽力的等級為(分貝),并規(guī)定測試值在區(qū)間為非常優(yōu)秀,測試值在區(qū)間為優(yōu)秀,某班名同學(xué)都進行了聽力測試,所得測試值制成頻率分布直方圖:

)現(xiàn)從聽力等級為的同學(xué)中任意抽取出4人,記聽力非常優(yōu)秀的同學(xué)人數(shù)為,求的分布列與數(shù)學(xué)期望:

)現(xiàn)選出一名同學(xué)參加另一項測試,測試規(guī)則如下:四個音叉的發(fā)生情況不同,由強到弱的次序分別為12,34.測試前將音叉隨機排列,被測試的同學(xué)依次聽完后給四個音叉按發(fā)音的強弱標出一組序號(其中1,23,4的一個排列),記,可用描述兩次排序的偏離程度,求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐中,,,,,.

1)求證:平面平面ABC

2M是線段AC上一點,若,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐中,底面為直角梯形,,平面,,分別是,的中點.

1)證明:;

2)若,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,底面ABC,HPC的中點,MAH的中點,.

1)求PM與平面AHB成角的正弦值;

2)在線段PB上是否存在點N,使得平面ABC.若存在,請說明點N的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)有關(guān)資料預(yù)測,某市下月1—14日的空氣質(zhì)量指數(shù)趨勢如下圖所示.,根據(jù)已知折線圖,解答下面的問題:

1)求污染指數(shù)的眾數(shù)及前五天污染指數(shù)的平均值;(保留整數(shù))

2)為了更好發(fā)揮空氣質(zhì)量監(jiān)測服務(wù)人民的目的,監(jiān)測部門在發(fā)布空氣質(zhì)量指數(shù)的同時,也給出了出行建議,比如空氣污染指數(shù)大于150時需要戴口罩,超過200時建議減少外出活動等等.如果某人事先沒有注意到空氣質(zhì)量預(yù)報,而在1—12號這12天中隨機選定一天,欲在接下來的兩天中(不含選定當天)進行外出活動.求其外出活動的兩天期間.

①恰好都遭遇重度及以上污染天氣的概率;

②至少有一天能避開重度及以上污染天氣的概率.

附:空氣質(zhì)量等級參考表:

等級

優(yōu)

輕度污染

中度污染

重度污染

嚴重污染

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解居民的家庭收入情況,某社區(qū)組織工作人員從該社區(qū)的居民中隨機抽取了100戶家庭進行問卷調(diào)查.經(jīng)調(diào)查發(fā)現(xiàn),這些家庭的月收入在3000元到10000元之間,根據(jù)統(tǒng)計數(shù)據(jù)作出如圖所示的頻率分布直方圖:

1)經(jīng)統(tǒng)計發(fā)現(xiàn),該社區(qū)居民的家庭月收入(單位:百元)近似地服從正態(tài)分布,其中近似為樣本平均數(shù).落在區(qū)間的左側(cè),則可認為該家庭屬收入較低家庭,社區(qū)將聯(lián)系該家庭,咨詢收入過低的原因,并采取相應(yīng)措施為該家庭提供創(chuàng)收途徑.若該社區(qū)家庭月收入為4100元,試判斷家庭是否屬于收入較低家庭,并說明原因;

2)將樣本的頻率視為總體的概率.

①從該社區(qū)所有家庭中隨機抽取戶家庭,若這戶家庭月收入均低于8000元的概率不小于50%,求的最大值;

②在①的條件下,某生活超市贊助了該社區(qū)的這次調(diào)查活動,并為這次參與調(diào)查的家庭制定了贈送購物卡的活動,贈送方式為:家庭月收入低于的獲贈兩次隨機購物卡,家庭月收入不低于的獲贈一次隨機購物卡;每次贈送的購物卡金額及對應(yīng)的概率分別為:

贈送購物卡金額(單位:元)

100

200

300

概率

家庭預(yù)期獲得的購物卡金額為多少元?(結(jié)果保留整數(shù))

查看答案和解析>>

同步練習(xí)冊答案