若A={x|5x2-2x-3<0},B={x|2x2+3x-2≤0}.求A∩B,A∪B?
考點(diǎn):交集及其運(yùn)算,并集及其運(yùn)算
專題:集合
分析:利用不等式的性質(zhì)和并集、交集的定義求解.
解答: 解:∵A={x|5x2-2x-3<0},B={x|2x2+3x-2≤0},
A={x|-
3
5
<x<1},B={x|-2≤x≤
1
2
}

A∩B={x|-
3
5
<x≤
1
2
},A∪B={x|-2≤x<1}
點(diǎn)評(píng):本題考查集合的交集和并集的求法,是基礎(chǔ)題,解題時(shí)要注意不等式性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x、y滿足
1≤x+y≤4
-2≤x-y≤2
目標(biāo)函數(shù)Z=ax+by(a>0,b>0).
(1)若a=2,b=1,求Z的最大值與最小值;
(2)若Z的最大值為6,求
6
a
+
2
b
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x+3
-
3-x
,求f(x)的定義域及值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+y2=1(a>1)的上頂點(diǎn)為A,右焦點(diǎn)為F,直線AF與圓M:(X-3)2+(y-1)2=3相切.
(1)求橢圓C的方程;
(2)求圓M關(guān)于直線AF對(duì)稱的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(
3
x
-
3x
)n
的展開(kāi)式的各項(xiàng)系數(shù)之和等于(4
3x
-
1
5x
)5
展開(kāi)式中的常數(shù)項(xiàng),求(
3
x
-
3x
)n
展開(kāi)式中含x-1的項(xiàng)的二項(xiàng)式系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1號(hào)箱中有2個(gè)白球和4個(gè)紅球,2號(hào)箱中有5個(gè)白球和3個(gè)紅球,現(xiàn)隨機(jī)地從1號(hào)箱中取出一球放入2號(hào)箱,然后從2號(hào)箱隨機(jī)取出一球,問(wèn):
(Ⅰ)從1號(hào)箱中取出的是紅球的條件下,從2號(hào)箱取出紅球的概率是多少?
(Ⅱ)從2號(hào)箱取出紅球的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,一個(gè)小球從 M處投入,通過(guò)管道自上而下落A或B或C.已知小球從每個(gè)叉口落入左右兩個(gè)管道的可能性是相等的.某商家按上述投球方式進(jìn)行促銷(xiāo)活動(dòng),若投入的小球落到A,B,C,則分別設(shè)為l,2,3等獎(jiǎng).
(Ⅰ)已知獲得l,2,3等獎(jiǎng)的折扣率分別為50%,70%,90%.記隨變量ξ為獲得k(k=1,2,3)等獎(jiǎng)的折扣率,求隨機(jī)變量ξ的分布列及期望Eξ
(Ⅱ)若有3人次(投入l球?yàn)閘人次)參加促銷(xiāo)活動(dòng),記隨機(jī)變量η為獲得1等獎(jiǎng)或2等獎(jiǎng)的人次,求P(η=2)和η的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
p
x
(p>0),討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△OPQ中,
OA
=
1
2
OP
OB
=
1
3
OQ
,QA與PB相交于點(diǎn)C,設(shè)
OP
=
a
,
OQ
=
b


(1)用
a
,
b
表示
OC
;
(2)過(guò)C點(diǎn)作直線l分別與線段OQ,OP交于點(diǎn)M,N,設(shè)
OM
OQ
,
ON
OP
,求證:
2
+
1
=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案