20.正方體ABCD-A1B1C1D1中,E為AB中點(diǎn),F(xiàn)為CD1中點(diǎn).
(1)求證:EF∥平面ADD1A1;
(2)AB=2,求三棱錐D1-DEF的體積.

分析 (1)取DD1中點(diǎn)M,連接MA,MF,推導(dǎo)出AEFM是平行四邊形,從而EF∥AM,由此能證明EF∥平面ADD1A1
(2)三棱錐D1-DEF的體積${V_{{D_1}-DEF}}={V_{E-{D_1}DF$.由此能求出結(jié)果.

解答 證明:(1)取DD1中點(diǎn)M,連接MA,MF,
∵正方體ABCD-A1B1C1D1中,E為AB中點(diǎn),F(xiàn)為CD1中點(diǎn).
∴$MF\underline{\underline∥}AE\underline{\underline∥}\frac{1}{2}DC$,
∴AEFM是平行四邊形,∴EF∥AM,
又AM?平面ADD1A1,EF?平面ADD1A1,
∴EF∥平面ADD1A1
解:(2)∵AB=2,
∴三棱錐D1-DEF的體積:
${V_{{D_1}-DEF}}={V_{E-{D_1}DF}}=\frac{1}{3}{S_{△{D_1}DF}}×2=\frac{1}{3}×1×2=\frac{2}{3}$.

點(diǎn)評(píng) 本題考查線面平行的證明,考查三棱錐的體積的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知α,β是兩個(gè)不同平面,直線l?β,則“α∥β”是“l(fā)∥α”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.對(duì)一個(gè)量用兩種方法分別算一次,由結(jié)果相同構(gòu)造等式,這種方法稱為“算兩次”的思想方法.利用這種方法,結(jié)合二項(xiàng)式定理,可以得到很多有趣的組合恒等式.
例如:考察恒等式(1+x)2n=(1+x)n(1+x)n(n∈N*),左邊xn的系數(shù)為C2nn,而右邊(1+x)n(1+x)n=(Cn0+Cn1x+…+Cnnxn)(Cn0+Cn1x+…+Cnnxn),xn的系數(shù)為Cn0Cnn+Cn1Cnn-1+…+CnnCn0=(Cn02+(Cn12+…+(Cnn2,因此可得到組合恒等式C2nn=(Cn02+(Cn12+…+(Cnn2
(1)根據(jù)恒等式(1+x)m+n=(1+x)m(1+x)n(m,n∈N*)兩邊xk(其中k∈N,k≤m,k≤n)的系數(shù)相同,直接寫出一個(gè)恒等式;
(2)利用算兩次的思想方法或其他方法證明:$\sum_{k=0}^{[{\frac{n}{2}}]}{C_n^{2k}}•{2^{n-2k}}•C_{2k}$k=C2nn,其中$[{\frac{n}{2}}]$是指不超過$\frac{n}{2}$的最大整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某化工廠每一天中污水污染指數(shù)f(x)與時(shí)刻x(時(shí))的函數(shù)關(guān)系為f(x)=|log25(x+1)-a|+2a+1,x∈[0,24],其中a為污水治理調(diào)節(jié)參數(shù),且a∈(0,1).
(1)若$a=\frac{1}{2}$,求一天中哪個(gè)時(shí)刻污水污染指數(shù)最低;
(2)規(guī)定每天中f(x)的最大值作為當(dāng)天的污水污染指數(shù),要使該廠每天的污水污染指數(shù)不超過3,則調(diào)節(jié)參數(shù)a應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知命題p:“如果xy=0,那么x=0或y=0”,在命題p的逆命題,否命題,逆否命題三個(gè)命題中,真命題的個(gè)數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.書架上有2本不同的語文書,3本不同的數(shù)學(xué)書,從中任意取出2本,取出的書恰好都是數(shù)學(xué)書的概率為( 。
A.$\frac{3}{10}$B.$\frac{1}{4}$C.$\frac{3}{7}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.正方體12條棱所在直線中成異面直線的有24對(duì).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=(x-1)ex+ax2,a∈R.
(Ⅰ)討論函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.正整數(shù)的各數(shù)位上的數(shù)字重新排列后得到的最大數(shù)記為a=max{n},得到的最小數(shù)記為b=min{n}(如正整數(shù)n=2016,則a=6210,b=0126),執(zhí)行如圖所,示的程序框圖,若輸入n=2017,則輸出的S的值為( 。
A.6174B.7083C.8341D.8352

查看答案和解析>>

同步練習(xí)冊(cè)答案