設(shè)函數(shù)f(x)=x2-mlnx,g(x)=x2-x+a.
(1)當a=0時,f(x)≥g(x)在(1,+∞),上恒成立,求實數(shù)m的取值范圍;
(2)當m=2時,若函數(shù)h(x)=f(x)-g(x)在[1,3]上恰有兩個不同的零點,求實數(shù)a的取值范圍.

(1)(2)

解析試題分析:(1) 可將問題轉(zhuǎn)化為 時, 恒成立問題。令,先求導(dǎo),導(dǎo)數(shù)大于0得原函數(shù)的增區(qū)間,導(dǎo)數(shù)小于0得原函數(shù)的減區(qū)間,根據(jù)單調(diào)性可求最小值。只需 即可。(2)可將問題轉(zhuǎn)化為方程,在上恰有兩個相異實根,令。同(1)一樣用導(dǎo)數(shù)求函數(shù)的單調(diào)性然后再求其極值和端點處函數(shù)值。比較極值和端點處函數(shù)值得大小,畫函數(shù)草圖由數(shù)形結(jié)合分析可知直線應(yīng)與函數(shù)的圖像有2個交點。從而可列出關(guān)于的方程。
試題解析:
解:(1)由,可得             1分
,即,記
上恒成立等價于.       3分
求得
時, ;
時, .
處取得極小值,也是最小值,即,故.
所以,實數(shù)的取值范圍為                  5分
(2)函數(shù)上恰有兩個不同的零點
等價于方程,在上恰有兩個相異實根.       6分
,則.
時,;
時,
上是單調(diào)遞減函數(shù),在上是單調(diào)遞增            8分
函數(shù).故
,
,∴只需,
故a的取值范圍是.                    10分
考點:1導(dǎo)數(shù)研究函數(shù)的單調(diào)性;2用單調(diào)性求最值;3數(shù)形結(jié)合思想。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(其中).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)上有且只有一個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)若,求曲線在點處的切線方程;
(2)若 求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當時,求曲線在點處的切線方程;
(2)當時,若在區(qū)間上的最小值為-2,求的取值范圍;
(3)若對任意,且恒成立,求的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當時,求函數(shù)上的最大值;
(2)令,若在區(qū)間上不單調(diào),求的取值范圍;
(3)當時,函數(shù)的圖像與x軸交于兩點,且,又的導(dǎo)函數(shù),若正常數(shù)滿足條件.證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)處切線為.
(1)求的解析式;
(2)設(shè),,,表示直線的斜率,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若處取得極值,求實數(shù)的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若上沒有零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知處取得極值,且在點處的切線斜率為.
⑴求的單調(diào)增區(qū)間;
⑵若關(guān)于的方程在區(qū)間上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,,為常數(shù), 是自然對數(shù)的底數(shù)),曲線在點處的切線與軸垂直,
(Ⅰ)求的值及的單調(diào)區(qū)間;
(Ⅱ)已知函數(shù) (為正實數(shù)),若對于任意,總存在, 使得,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案