【題目】若定義在[a,b]上的函數(shù)f(x)=x3﹣3x2+1的值域?yàn)閇﹣3,1],則b﹣a的最大值是 .
【答案】4
【解析】解:∵函數(shù)f(x)=x3﹣3x2+1,∴f′(x)=3x2﹣6x=3x(x﹣2),
∴當(dāng)x<0時(shí),f′(x)>0,函數(shù)f(x)在(﹣∞,0)上單調(diào)遞增;
當(dāng)0<x<2時(shí),f′(x)<0,函數(shù)f(x)在(0,2)上單調(diào)遞減;
當(dāng)x>2時(shí),f′(x)>0,函數(shù)f(x)在(2,+∞)上單調(diào)遞增.
∴當(dāng)x=0時(shí),f(x)有極大值,f(0)=1,
當(dāng)x=2時(shí),f(x)有極小值,f(2)=23﹣3×22+1=﹣3,
∵當(dāng)f(x)=1時(shí),x=0或x=3,
當(dāng)f(x)=﹣3時(shí),x=2或x=﹣1,
∴若﹣3≤f(x)≤1,則﹣1≤x≤3.
∴定義在[a,b]上的函數(shù)f(x)=x3﹣3x2+1的值域?yàn)閇﹣3,1],則b﹣a的最大值是1﹣(﹣3)=4.
所以答案是:4.
【考點(diǎn)精析】掌握函數(shù)的最大(小)值與導(dǎo)數(shù)是解答本題的根本,需要知道求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分16分)在平面直角坐標(biāo)系中,已知橢圓: 的離心率,直線過橢圓的右焦點(diǎn),且交橢圓于, 兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn),連結(jié),過點(diǎn)作垂直于軸的直線,設(shè)直線與直線交于點(diǎn),試探索當(dāng)變化時(shí),是否存在一條定直線,使得點(diǎn)恒在直線上?若存在,請求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)底數(shù).
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)討論函數(shù)的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間;
(3)已知,若函數(shù)對(duì)任意都成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分16分)如圖,在平面直角坐標(biāo)系中,離心率為的橢圓 的左頂點(diǎn)為,過原點(diǎn)的直線(與坐標(biāo)軸不重合)與橢圓交于兩點(diǎn),直線分別與軸交于兩點(diǎn).若直線斜率為時(shí), .
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)試問以為直徑的圓是否經(jīng)過定點(diǎn)(與直線的斜率無關(guān))?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角△ABC中,∠BCA=90°,CA=CB=1,P為AB邊上的點(diǎn)且 =λ ,若 ≥ ,則λ的取值范圍是( )
A.[ ,1]
B.[ ,1]
C.[ , ]
D.[ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在2012年的自主招生考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績分組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),
第5組[95,100]得到的頻率分布直方圖如圖所示.
(1)分別求第3,4,5組的頻率;
(2)若該校決定在筆試成績高的第3,4,5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,求第3,4,5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(3)在(2)的前提下,學(xué)校決定在這6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第4組至少有一名學(xué)生被甲考官面試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若是兩個(gè)相交平面,則在下列命題中,真命題的序號(hào)為 .(寫出所有真命題的序號(hào))
①若直線,則在平面內(nèi),一定不存在與直線平行的直線.
②若直線,則在平面內(nèi),一定存在無數(shù)條直線與直線垂直.
③若直線,則在平面內(nèi),不一定存在與直線垂直的直線.
④若直線,則在平面內(nèi),一定存在與直線垂直的直線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖像如圖所示,則下列結(jié)論中一定成立的是( )
A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若曲線在點(diǎn)處的切線與直線垂直,求的值;
(Ⅱ)若函數(shù)存在極值點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com