【題目】某貧困地區(qū)有1500戶居民,其中平原地區(qū)1050戶,山區(qū)450戶,為調(diào)查該地區(qū)2017年家庭收入情況,從而更好地實(shí)施“精準(zhǔn)扶貧”,采用分層抽樣的方法,收集了150戶家庭2017年年收入的樣本數(shù)據(jù)(單位:萬元)
(I)應(yīng)收集多少戶山區(qū)家庭的樣本數(shù)據(jù)?
(Ⅱ)根據(jù)這150個(gè)樣本數(shù)據(jù),得到2017年家庭收入的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為, , , ,,.如果將頻率率視為概率,估計(jì)該地區(qū)2017年家庭收入超過1.5萬元的概率;
(Ⅲ)樣本數(shù)據(jù)中,由5戶山區(qū)家庭的年收入超過2萬元,請(qǐng)完成2017年家庭收入與地區(qū)的列聯(lián)表,并判斷是否有90%的把握認(rèn)為“該地區(qū)2017年家庭年收入與地區(qū)有關(guān)”?
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
超過2萬元 | 不超過2萬元 | 總計(jì) | |
平原地區(qū) | |||
山區(qū) | 5 | ||
總計(jì) |
【答案】(Ⅰ)45;(Ⅱ)0.45;(Ⅲ)答案見解析.
【解析】分析:(Ⅰ)由已知可得每戶居民被抽取的概率為,根據(jù)古典概型概率公式可得結(jié)果;(Ⅱ)由直方圖,利用符合條件矩形面積之和可求得該地區(qū)2017年家庭年收入超過萬元的概率;(Ⅲ)樣本數(shù)據(jù)中,年收入超過2萬元的戶數(shù)戶,而樣本數(shù)據(jù)中,有5戶山區(qū)家庭的年收入超過2萬元,完成列聯(lián)表,求出,即可判斷是否有的把握認(rèn)為 “該地區(qū)2017年家庭年收入與地區(qū)有關(guān)” .
詳解:(Ⅰ)由已知可得每戶居民被抽取的概率為0.1,故應(yīng)收集戶山區(qū)家庭的樣本數(shù)據(jù).
(Ⅱ)由直方圖可知該地區(qū)2017年家庭年收入超過1.5萬元的概率約為.
(Ⅲ)樣本數(shù)據(jù)中,年收入超過2萬元的戶數(shù)為戶.
而樣本數(shù)據(jù)中,有5戶山區(qū)家庭的年收入超過2萬元,故列聯(lián)表如下:
所以,
∴有的把握認(rèn)為“該地區(qū)2017年家庭年收入與地區(qū)有關(guān)”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了對(duì)2016年某校中考成績(jī)進(jìn)行分析,在60分以上的全體同學(xué)中隨機(jī)抽出8位,他們的數(shù)學(xué)分?jǐn)?shù)(已折算為百分制)從小到大排是60、65、70、75、80、85、90、95,物理分?jǐn)?shù)從小到大排是72、77、80、84、88、90、93、95. 參考公式:相關(guān)系數(shù) ,
回歸直線方程是: ,其中 ,
參考數(shù)據(jù): , , , .
(1)若規(guī)定85分以上為優(yōu)秀,求這8位同學(xué)中恰有3位同學(xué)的數(shù)學(xué)和物理分?jǐn)?shù)均為優(yōu)秀的概率;
(2)若這8位同學(xué)的數(shù)學(xué)、物理、化學(xué)分?jǐn)?shù)事實(shí)上對(duì)應(yīng)如下表:
學(xué)生編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數(shù)學(xué)分?jǐn)?shù)x | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分?jǐn)?shù)y | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
化學(xué)分?jǐn)?shù)z | 67 | 72 | 76 | 80 | 84 | 87 | 90 | 92 |
①用變量y與x、z與x的相關(guān)系數(shù)說明物理與數(shù)學(xué)、化學(xué)與數(shù)學(xué)的相關(guān)程度;
②求y與x、z與x的線性回歸方程(系數(shù)精確到0.01),當(dāng)某同學(xué)的數(shù)學(xué)成績(jī)?yōu)?0分時(shí),估計(jì)其物理、化學(xué)兩科的得分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的方程為.
(1)求圓的直角坐標(biāo)方程;
(2)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電腦公司有5名產(chǎn)品推銷員,其工作年限與年推銷金額的數(shù)據(jù)如表:
推銷員編號(hào) | 1 | 2 | 3 | 4 | 5 |
工作年限年 | 3 | 5 | 6 | 7 | 9 |
推銷金額萬元 | 2 | 3 | 3 | 4 | 5 |
求年推銷金額y關(guān)于工作年限x的線性回歸方程;
判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
若第6名推銷員的工作年限是11年,試估計(jì)他的年推銷金額.
(參考數(shù)據(jù),,
參考公式:線性回歸方程中,,其中為樣本平均數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)h(x)=(m2-5m+1)xm+1為冪函數(shù),且為奇函數(shù).
(I)求m的值;
(II)求函數(shù)g(x)=h(x)+,x∈的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sinx+cosωx(ω>0)的圖象與x軸交點(diǎn)的橫坐標(biāo)依次構(gòu)成一個(gè)公差為 的等差數(shù)列,把函數(shù)f(x)的圖象沿x軸向左平移 個(gè)單位,得到函數(shù)g(x)的圖象,則( )
A.g(x)是奇函數(shù)
B.g(x)關(guān)于直線x=﹣ 對(duì)稱
C.g(x)在[ , ]上是增函數(shù)
D.當(dāng)x∈[ , ]時(shí),g(x)的值域是[2,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求C;
(2)若c= ,△ABC的面積為 ,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期為π,且其圖象向左平移 個(gè)單位后得到函數(shù)g(x)=cosωx的圖象,則函數(shù)f(x)的圖象( )
A.關(guān)于直線x= 對(duì)稱
B.關(guān)于直線x= 對(duì)稱
C.關(guān)于點(diǎn)( ,0)對(duì)稱
D.關(guān)于點(diǎn)( ,0)對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:①函數(shù) 在上的值域?yàn)?/span>;②函數(shù)是奇函數(shù);③函數(shù)在上是減函數(shù);其中正確的個(gè)數(shù)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com