【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的參數(shù)方程為為參數(shù)),在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的方程為.

(1)求圓的直角坐標方程;

(2)設圓與直線交于點,若點的坐標為,求的最小值.

【答案】(1)x2+(y-3)2=9.(2)

【解析】試題分析:(1)根據(jù) 將圓的極坐標方程轉化為直角坐標方程(2)由直線參數(shù)方程得,所以將直線參數(shù)方程代入圓直角坐標方程得t2+2(cosα-sinα)t-7=0,利用韋達定理化簡得,最后根據(jù)三角函數(shù)有界性求最小值.

試題解析:(1)由ρ=6sinθ得ρ2=6ρsinθ,化為直角坐標方程為x2+y2=6y,即x2+(y-3)2=9.

(2)將的參數(shù)方程代入圓C的直角坐標方程,得t2+2(cosα-sinα)t-7=0.

由△=4(cosα-sinα)2+4×7>0,故可設t1,t2是上述方程的兩根,

所以

又由直線過點(1,2),故,結合參數(shù)的幾何意義得

,當時取等.

所以|PA|+|PB|的最小值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設等差數(shù)列{an}的前n項和為Sn , 已知a3=24,S11=0.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{an}的前n項和Sn;
(Ⅲ)當n為何值時,Sn最大,并求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:如果函數(shù)y=f(x)在定義域內給定區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)= ,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0是它的一個均值點.例如y=|x|是[﹣2,2]上的平均值函數(shù),0就是它的均值點.若函數(shù)f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函數(shù)”,則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一組數(shù)據(jù)的平均數(shù)是2.8,方差是3.6,若將這組數(shù)據(jù)中的每一個數(shù)據(jù)都加上60,得到一組新數(shù)據(jù),則所得新數(shù)據(jù)的平均數(shù)和方差分別是(
A.57.2,3.6
B.57.2,56.4
C.62.8,63.6
D.62.8,3.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(12分)如圖,底面是正三角形的直三棱柱中,D是BC的中點,.

)求證:平面

)求的A1 到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某產品共有100件,其中一、二、三、四等品的個數(shù)比為4:3:2:1,采用分層抽樣的方法抽取一個樣本,若從一等品中抽取8件,從三等品和四等品中抽取的個數(shù)分別為a,b,則直線ax+by+8=0上的點到原點的最短距離為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的前n項和為Sn , 對任意的正整數(shù)n,都有an=5Sn+1成立,記bn= (n∈N*).
(1)求數(shù)列{an}和數(shù)列{bn}的通項公式;
(2)設數(shù)列{bn}的前n項和為Rn , 求證:對任意的n∈N* , 都有Rn<4n;
(3)記cn=b2n﹣b2n1(n∈N*),設數(shù)列{cn}的前n項和為Tn , 求證:對任意n∈N* , 都有Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方形ABCD的頂點坐標分別為A(0,1),B(2,0),C(3,2).
(1)求CD邊所在直線的方程;
(2)求以AC為直徑的圓M的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若二次函數(shù)y=f(x)的圖象經過原點,且1≤f(﹣1)≤2,3≤f(1)≤4,求f(﹣2)的范圍.

查看答案和解析>>

同步練習冊答案