如圖,三條直線a、b、c兩兩平行,直線a、b間的距離為p,直線b、c間的距離為數(shù)學公式,A、B為直線a上的兩個定點,且AB=2p,MN是在直線b上滑動的長度為2p的線段.
(1)建立適當?shù)钠矫嬷苯亲鴺讼担蟆鰽MN的外心C的軌跡E;
(2)當△AMN的外心C在E上什么位置時,使d+BC最?最小值是多少?(其中,d為外心C到直線c的距離)

解:以直線b為 x軸,以過點A且與b直線垂直的直線為y軸,建立直角坐標系,
由題意A(0,p),設△AMN的外心C(x,y),則M(x-p,0)N(x+p,0),
由題意有|CA|=|CM|.∴,
解得x2=2py,它是以原點為頂點、y軸為對稱軸、開口向上的拋物線.
(2)不難得到,直線c是軌跡E的準線,由拋物線的定義可知,d=|CF|,
其中F(0.),是拋物線的焦點,
所以d+|BC|=|CF|+|BC|,
由兩點距離可知直線段最短,
線段BF與軌跡E的交點就為所求的使d+|BC|最小點,
由兩點式方程可求直線BF的方程為:y=x+p,與x2=2py聯(lián)立,
得C().
故當△AMN的外心C在E上
C()時,d+|BC|最小,
最小值|BF|=
分析:(1)以直線b為 x軸,以過點A且與b直線垂直的直線為y軸,建立直角坐標系,設出外心坐標,利用距離相等列出方程即可求解△AMN的外心C的軌跡E;
(2)直線c是軌跡E的準線,推出d=|CF|,F(xiàn)是拋物線的焦點,通過d+|BC|=|CF|+|BC|,由兩點距離可知直線段最短,聯(lián)立y=x+p,與x2=2py,即可求出C的坐標,求出最小值.
點評:本題考查軌跡方程的求法,距離的最小值的求解與應用,考查軌跡方程求法的一般步驟,轉化思想的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,三條直線a、b、c兩兩平行,直線a、b間的距離為p,直線b、c間的距離為
p2
,A、B為直線a上的兩個定點,且AB=2p,MN是在直線b上滑動的長度為2p的線段.
(1)建立適當?shù)钠矫嬷苯亲鴺讼担蟆鰽MN的外心C的軌跡E;
(2)當△AMN的外心C在E上什么位置時,使d+BC最?最小值是多少?(其中,d為外心C到直線c的距離)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三條直線a、b、c兩兩平行,直線a、b間的距離為p,直線bc間的距離為,AB為直線a上兩定點,且|AB|=2pMN是在直線b上滑動的長度為2p的線段。 

(1)建立適當?shù)钠矫嬷苯亲鴺讼,求?i>AMN的外心C的軌跡E;

(2)接上問,當△AMN的外心CE上什么位置時,d+|BC|最小,最小值是多少?(其中d是外心C到直線c的距離).

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年遼寧省鐵嶺市開原市高級中學高二(上)期末數(shù)學試卷(文科)(解析版) 題型:解答題

如圖,三條直線a、b、c兩兩平行,直線a、b間的距離為p,直線b、c間的距離為,A、B為直線a上的兩個定點,且AB=2p,MN是在直線b上滑動的長度為2p的線段.
(1)建立適當?shù)钠矫嬷苯亲鴺讼,求△AMN的外心C的軌跡E;
(2)當△AMN的外心C在E上什么位置時,使d+BC最?最小值是多少?(其中,d為外心C到直線c的距離)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三條直線a、b、c兩兩平行,直線a、b間的距離為p,直線b、c間的距離為A、B為直線a上的兩個定點,且AB=2pMN是在直線b上滑動的長度為2p的線段.

(1)建立適當?shù)钠矫嬷苯亲鴺讼,求?i>AMN的外心C的軌跡E

(2)當△AMN的外心CE上什么位置時,使d+BC最小?最小值是多少?(其中,d為外心C到直線c的距離)

查看答案和解析>>

同步練習冊答案