【題目】若一條直線a與平面α內(nèi)的一條直線b所成的角為30°,則下列說法正確的是( )
A. 直線a與平面α所成的角為30° B. 直線a與平面α所成的角大于30°
C. 直線a與平面α所成的角小于30° D. 直線a與平面α所成的角不超過30°
【答案】D
【解析】
根據(jù)題意,作出圖形如圖所示.由直線與平面所成角的定義,得到a與b所成角的最小值等于,最大值等于90°.由此得到本題的答案.
設(shè)直線a在平面α的射影為直線c,在平面α內(nèi)作直線d⊥c,由三垂線定理可得直線d⊥a.
設(shè)直線a與平面α所成的角為,
∴直線a與直線c所成的角為,等于平面α內(nèi)的直線與直線a所成角的最小值.
直線b在平面α內(nèi),當b與直線d平行或重合時,可得a⊥b,直線a與b所成的角為90°,達到最大值;
當b與直線c平行或重合時,可得a、b所成的角為,達到最小值.
因此,直線a與b所成的角為φ的取值范圍為≤φ≤90°.
因為直線a與平面α內(nèi)的一條直線b所成的角為30°,
直線a與平面α所成的角不超過30°,
故答案為:D
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)已知平面內(nèi)一動點P到點F(1,0)的距離與點P到y軸的距離的差等于1.
(1)求動點P的軌跡C的方程;
(2)過點F作兩條斜率存在且互相垂直的直線l1,l2,設(shè)l1與軌跡C相交于點A,B,l2與軌跡C相交于點D,E,求·的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=2|x﹣1|+x﹣1,g(x)=16x2﹣8x+1.記f(x)≤1的解集為M,g(x)≤4的解集為N.
(1)求M;
(2)當x∈M∩N時,證明:x2f(x)+x[f(x)]2≤ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知當x∈[0,1]時,函數(shù)y=(mx﹣1)2 的圖象與y= +m的圖象有且只有一個交點,則正實數(shù)m的取值范圍是( 。
A.(0,1]∪[2 ,+∞)
B.(0,1]∪[3,+∞)
C.(0, )∪[2 ,+∞)
D.(0, ]∪[3,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{xn}是各項均為正數(shù)的等比數(shù)列,且x1+x2=3,x3﹣x2=2.(12分)
(Ⅰ)求數(shù)列{xn}的通項公式;
(Ⅱ)如圖,在平面直角坐標系xOy中,依次連接點P1(x1 , 1),P2(x2 , 2)…Pn+1(xn+1 , n+1)得到折線P1 P2…Pn+1 , 求由該折線與直線y=0,x=x1 , x=xn+1所圍成的區(qū)域的面積Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 , 的夾角為120°,且| |=2,| |=3,則向量2 +3 在向量2 + 方向上的投影為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x(1﹣a|x|)+1(a>0),若f(x+a)≤f(x)對任意的x∈R恒成立,則實數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】潮州統(tǒng)計局就某地居民的月收入調(diào)查了人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分
布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在)。
(1)求居民月收入在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這人中分層抽樣方法抽出人作進一步分析,則月收入在的這段應(yīng)抽多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com