分析 (1)將P代入橢圓方程,由題意可知PF2⊥F1F2,則c=$\sqrt{2}$,a2-b2=2,求得a和b的值,即可求得橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l的方程,代入橢圓方程,由韋達(dá)定理,弦長(zhǎng)公式,點(diǎn)到直線的距離公式,即可求得△AOB面積的表達(dá)式,根據(jù)基本不等式的性質(zhì),即可求得m的值,求得直線l的方程.
解答 解:(1)由橢圓過(guò)點(diǎn)$P({\sqrt{2},1})$,則$\frac{2}{{a}^{2}}+\frac{1}{^{2}}=1$,①
連接PF2,由Q為線段PF1的中點(diǎn),O為線段F1F2的中點(diǎn),
則PF2⊥F1F2,則c=$\sqrt{2}$,
由a2-b2=2,②
由①②得a=2,b=$\sqrt{2}$,
則橢圓的離心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$;
(2)由(1)橢圓C與方程$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$,直線l的斜率k=$\frac{丨P{F}_{2}丨}{丨{F}_{1}{F}_{2}丨}$=$\frac{1}{2\sqrt{2}}$=$\frac{\sqrt{2}}{4}$,
不妨設(shè)直線l的方程y=$\frac{\sqrt{2}}{4}$x+m,設(shè)A(x1,y1),B(x2,y2),
$\left\{\begin{array}{l}{y=\frac{\sqrt{2}}{4}x+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,整理得:$\frac{5}{4}$x2+$\sqrt{2}$mx+2(m2-2)=0,
則△=2m2-10(m2-2)=20-8m2>0,解得:丨m丨<$\frac{\sqrt{10}}{2}$,
x1+x2=-$\frac{4\sqrt{2}m}{5}$,x1x2=$\frac{8({m}^{2}-2)}{5}$,
∴丨AB丨=$\sqrt{1+{k}^{2}}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+\frac{1}{8}}$$\sqrt{\frac{32{m}^{2}-160({m}^{2}-2)}{5}}$,
由O到AB的距離h=$\frac{丨4m丨}{\sqrt{16+2}}$,
則△AOB的面積S=$\frac{1}{2}$×$\sqrt{1+\frac{1}{8}}$$\sqrt{\frac{32{m}^{2}-160({m}^{2}-2)}{5}}$×$\frac{丨4m丨}{\sqrt{16+2}}$=$\frac{2\sqrt{2}}{5}$×$\sqrt{2{m}^{2}(5-2{m}^{2})}$≤$\frac{2\sqrt{2}}{5}$×$\frac{5}{2}$,
當(dāng)且僅當(dāng)2m2=5-2m2時(shí),取等號(hào),即m=±$\frac{\sqrt{5}}{2}$,
則直線l的方程y=$\frac{\sqrt{2}}{4}$x±$\frac{\sqrt{5}}{2}$.
點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,考查韋達(dá)定理,弦長(zhǎng)公式,基本不等式的性質(zhì),考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 三角形 | B. | 四邊形 | C. | 五邊形 | D. | 六邊形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 32π | B. | 48π | C. | 50π | D. | 64π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com