20.$\frac{cos10°+\sqrt{3}sin10°}{\sqrt{1-si{n}^{2}50°}}$=2.

分析 根據(jù)同角三角函數(shù)關(guān)系式和輔助角公式即可得答案.

解答 解:由$\frac{cos10°+\sqrt{3}sin10°}{\sqrt{1-si{n}^{2}50°}}$=$\frac{2sin(10°+30°)}{\sqrt{co{s}^{2}50°}}=\frac{2sin40°}{cos50°}=2$.
故答案為:2.

點(diǎn)評(píng) 本題考查了同角三角函數(shù)關(guān)系式和輔助角公式的運(yùn)用,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)函數(shù)f(x)=$\frac{{e}^{2}{x}^{2}+1}{x}$,g(x)=$\frac{{e}^{2}{x}^{2}}{{e}^{x}}$,若對(duì)任意的x1、x2∈(0,+∞),不等式$\frac{g({x}_{1})}{k}$≤$\frac{f({x}_{2})}{k+1}$恒成立,則正數(shù)k的取值范圍是k≥$\frac{4}{2e-4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)f(x)=|sinπx|,則f(1)+f(2)+f(3)+…+f(2010)=(  )
A.0B.$\sqrt{3}$C.-$\sqrt{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知雙曲線C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{^{2}}$=1(b>0)的焦點(diǎn)到漸近線的距離為3,則雙曲線C的虛軸長(zhǎng)為( 。
A.3B.6C.$2\sqrt{5}$D.$2\sqrt{21}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.兩個(gè)好朋友相約周天在9點(diǎn)到10點(diǎn)到銀川市圖書(shū)館看書(shū),先到者等候另一個(gè)人20分鐘方可離去.試求這兩人能會(huì)面的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)y=sin(x-$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+$\frac{1}{2}$是(  )
A.最小正周期為π的奇函數(shù)B.最小正周期為π的偶函數(shù)
C.最小正周期為$\frac{π}{2}$的奇函數(shù)D.最小正周期為$\frac{π}{2}$的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)函數(shù)$f(\frac{1}{x})={x^2}-\frac{2}{x}+lnx(x>0)$,則f'(1)=( 。
A.2B.-2C.5D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知直線l過(guò)點(diǎn)P(-2,5),且斜率為$-\frac{3}{4}$,則直線l的方程為3x+4y-14=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=2x-$\frac{1}{x}$-alnx(a∈R).
(1)當(dāng)a=3時(shí),求f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=f(x)-x+2alnx,且g(x)有兩個(gè)極值點(diǎn)x1,x2,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案