已知函數(shù)f(x)在定義在R上的奇函數(shù),若對于任意給定的不等實數(shù)x1、x2,不等式x1f(x1)+x2f(x2)<x1f(x2)+x2f(x1)恒成立,則不等式f(x)<0的解集為( 。
A、(-∞,0)
B、(0,+∞)
C、(-∞,10)
D、(1,+∞)
考點:函數(shù)奇偶性的性質
專題:函數(shù)的性質及應用
分析:先將不等式轉化為(x1-x2)[f(x1)-f(x2)]<0恒成立得到函數(shù)f(x)是定義在R上的減函數(shù);再利用函數(shù)f(x)是定義在R上的奇函數(shù)得到函數(shù)f(x)過(0,0)點,即可求出不等式f(x)<0的解集.
解答: 解:∵對于任意給定的不等實數(shù)x1,x2,不等式x1f(x1)+x2f(x2)<x1f(x2)+x2f(x1)恒成立,
∴不等式等價為(x1-x2)[f(x1)-f(x2)]<0恒成立,
即函數(shù)f(x)是定義在R上的減函數(shù).
∵函數(shù)f(x)是定義在R上的奇函數(shù),
∴函數(shù)f(x)過點(0,0);
故不等式f(x)<0,
解得x>0.
故選:B.
點評:本題主要考查函數(shù)奇偶性和單調性的綜合應用問題.將不等式進行轉化判斷出函數(shù)f(x)的單調性以及利用奇函數(shù)的性質得到函數(shù)f(x)過(0,0)點是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

證明:1+
1
3
+
1
7
+
1
15
+…+
1
2n-1
5
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等腰三角形三個頂點的坐標分別是A(0,3),B(-2,0),C(2,0),中線AO(O為原點)所在的直線的方程是x=0嗎?為什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD四邊形ABCD為正方形,AB=4,PA=3,A點在PD上的射影為G點.
(1)求證:AG⊥平面PDC;
(2)在棱AB上是否存在一點E,使得AG∥平面PEC.若存在,求出AE的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanθ=2,則
sin(
π
2
+θ)-cos(π-θ)
sin(
π
2
+θ)-sin(π-θ)
=( 。
A、2
B、-2
C、0
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體三視圖如圖所示,求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:cos243°+cos244°+cos245°+cos246°+cos247°=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

利用三角函數(shù)線,寫出滿足下列條件的角α的集合:
(1)sinα≥
2
2
;
(2)cosα≤
1
2
;
(2)|cosα|>|sinα|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,正方體ABCD-A1B1C1D1中,M、N分別為AB、B1C的中點,試用向量法判斷MN與平面A1BD的位置關系.

查看答案和解析>>

同步練習冊答案