13.由方程|z|2-8|z|+15=0所確定的復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)點的軌跡是以原點為圓心,以3和5為半徑的兩個圓.

分析 求解關(guān)于|z|的一元二次方程,可得|z|=3或|z|=5,由此得到方程|z|2-8|z|+15=0所確定的復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)點的軌跡.

解答 解:由|z|2-8|z|+15=0,得(|z|-3)(|z|-5)=0,
即|z|=3或|z|=5,
∴z在復(fù)平面內(nèi)對應(yīng)點的軌跡是以原點為圓心,以3或5為半徑的兩個圓.
故答案為:以原點為圓心,以3和5為半徑的兩個圓.

點評 本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,考查了一元二次方程的解法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)a>0,b>0.若3是3a與3b的等比中項,則$\frac{1}{a}+\frac{2}$的最小值為( 。
A.$3+2\sqrt{2}$B.$\frac{{3+2\sqrt{2}}}{3}$C.$\frac{{3+2\sqrt{2}}}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)奇函數(shù)f(x)=$\left\{\begin{array}{l}acosx-\sqrt{3}sinx+c,x≥0\\ cosx+bsinx-c,x<0\end{array}$,則a+c的值為0,不等式f(x)>f(-x)在x∈[-π,π]上的解集為$(-\frac{2π}{3},0)∪(\frac{2π}{3},π]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,該程序運行后輸出的結(jié)果為(  )
A.7B.11C.25D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知0≤x≤y≤1,則(2x-y)(1-2x)的最大值為$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若$\overrightarrow{a}$=(2,3,m),$\overrightarrow$=(2n,6,8)且$\overrightarrow{a}$,$\overrightarrow$為共線向量,則m+n的值為( 。
A.7B.$\frac{5}{2}$C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.要將兩種大小不同的鋼板截成A、B、C三種規(guī)格,每張鋼板可同時截得三種規(guī)格的小鋼板的塊數(shù)如表所示:
規(guī)格類型
鋼板類型
ABC
第一種鋼板   1   2     1
第二種鋼板  2    1     3
今需要三種規(guī)格的成品分別為12、15、27塊,用數(shù)學(xué)關(guān)系式和圖形表示上述要求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.將函數(shù)f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$)+1的圖象向左平移$\frac{π}{8}$個單位長度,再向下平移1個單位長度后,得到函數(shù)g(x)的圖象,則函數(shù)g(x)具有的性質(zhì)①③⑤.(填入所有正確的序號)
①最大值為$\sqrt{2}$,圖象關(guān)于直線x=$\frac{3π}{4}$對稱;②在(-$\frac{π}{2}$,0)上單調(diào)遞增,且為偶函數(shù);③最小正周期為π;④圖象關(guān)于點($\frac{π}{4}$,0)對稱,⑤在(0,$\frac{π}{4}$)上單調(diào)遞增,且為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知cos(2015π+α)=-$\frac{1}{2}$,且α是第四象限角,計算:
(1)sin(2016π-α);
(2)$\frac{sin[α+(2n+1)π]+sin[α-(2n+1)π]}{sin(α+2nπ)cos(α-2nπ)}$(n∈Z)

查看答案和解析>>

同步練習(xí)冊答案