圖1是一個(gè)由27個(gè)棱長為1的小正方體組成的魔方,圖2是由棱長為1的小正方體組成的5種簡單組合體.如果每種組合體的個(gè)數(shù)都有7個(gè),現(xiàn)從總共35個(gè)組合體中選出若干組合體,使它們恰好可以拼成1個(gè)圖1所示的魔方,則所需組合體的序號(hào)和相應(yīng)的個(gè)數(shù)是
 
.(提示回答形式,如2個(gè)①和3個(gè)②,只需寫出一個(gè)正確答案)
考點(diǎn):簡單空間圖形的三視圖
專題:規(guī)律型,空間位置關(guān)系與距離
分析:利用圖1是一個(gè)由27個(gè)棱長為1的小正方體組成的魔方,圖2是由棱長為1的小正方體組成的5種簡單組合體,即可得出結(jié)論.
解答: 解:根據(jù)圖1是一個(gè)由27個(gè)棱長為1的小正方體組成的魔方,圖2是由棱長為1的小正方體組成的5種簡單組合體,可得4個(gè)③和1個(gè)⑤可組成魔方.
故答案為:4個(gè)③和1個(gè)⑤
點(diǎn)評(píng):本題考查簡單空間圖形的三視圖,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在矩形ABCD中,AB=2,AD=6,E、F為AD的兩個(gè)三等分點(diǎn),AC和BF交于點(diǎn)G,△BEG的外接圓為圓H.
(1)求證:EG⊥BF;
(2)若圓H與圓C無公共點(diǎn),求圓C半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E為DD1的中點(diǎn)
(Ⅰ)求證:直線BD1⊥AC;
(Ⅱ)求異面直線BD1與CE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正三棱柱ABC-A1B1C1中,AB=2,AA1=3,點(diǎn)M,N在棱CC1,BB1上,且CM=B1N,則四棱錐A-BCMN的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“五一”期間,甲乙兩個(gè)商場分別開展促銷活動(dòng).
(1)甲商場的規(guī)則是:凡購物滿100元,可抽獎(jiǎng)一次.從裝有大小、形狀相同的4個(gè)白球、4個(gè)黑球的袋中摸出4個(gè)球,中獎(jiǎng)情況如下表:
摸出的結(jié)果獲得獎(jiǎng)金(單位:元)
4個(gè)白球或4個(gè)黑球200
3個(gè)白球1個(gè)黑球或3個(gè)黑球1個(gè)白球20
2個(gè)黑球2個(gè)白球10
記X為抽獎(jiǎng)一次獲得的獎(jiǎng)金,求X的分布列和期望.
(2)乙商場的規(guī)則是:凡購物滿100元,可抽獎(jiǎng)10次.其中,第n(n=1,2,3,…,10)次抽獎(jiǎng)方法是:從編號(hào)為n的袋中(裝有大小、形狀相同的n個(gè)白球和n個(gè)黑球)摸出n個(gè)球,若該次摸出的n個(gè)球顏色都相同,則可獲得獎(jiǎng)金5×2n-1元.各次摸獎(jiǎng)的結(jié)果互不影響,最終所獲得的總獎(jiǎng)金為10次獎(jiǎng)金之和.若某顧客購買120元的商品,不考慮其它因素,從獲得獎(jiǎng)金的期望分析,他應(yīng)該選擇哪一家商場?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)A、B的極坐標(biāo)分別為(1 , 
π
3
)
(3 , 
3
)
,曲線C的參數(shù)方程為
x=rcosα
y=rsinα
為參數(shù)).
(Ⅰ)求直線AB的直角坐標(biāo)方程;
(Ⅱ)若直線AB和曲線C只有一個(gè)交點(diǎn),求r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個(gè)命題中錯(cuò)誤的是(  )
A、已知隨機(jī)變量X~N(2,9)P(X>c+1)=P(X<c+1),則c=1
B、兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)r的絕對(duì)值越接近于1
C、在回歸直線方程
y
=0.2x+12中,當(dāng)解釋變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量
y
平均增加0.2個(gè)單位
D、對(duì)分類變量X與Y的隨機(jī)變量K2的觀測值k,k越小,“X與Y有關(guān)系”的把握程度越大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A、∠B、∠C的對(duì)邊分別是a、b、c,且tanC+3tanB=0.
(1)求∠A的最大值;
(2)若b2+2a=c2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓
x2
10
+
y2
m
=1與雙曲線x2-
y2
b
=1有相同的焦點(diǎn),且橢圓與雙曲線交于點(diǎn)P(
10
3
,y),則實(shí)數(shù)b的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案