分析:(Ⅰ)根據(jù)a
2和a
1及題設(shè)中遞推式求得a
3,進(jìn)而求得a
4,代入
bn=求得b
1,b
2,b
3的值;
(Ⅱ)整理a
n+2=4a
n+1+a
n得
=4+,進(jìn)而求得關(guān)于b
n的遞推式,進(jìn)而推斷出b
n>4,且c
n=b
nb
n+1=4b
n+1>17進(jìn)而推斷出S
n=c
1+c
2++c
n≥17n.
(Ⅲ)先看當(dāng)n=1時(shí)把b
1和b
2代入結(jié)論成立;在看當(dāng)n≥2時(shí),把(2)中求得的遞推式代入|b
2n-b
n|,進(jìn)而根據(jù)(2)中S
n≥17n的結(jié)論推斷出|b
2n-b
n|<
•,進(jìn)而根據(jù)|b
2n-b
n|≤|b
n+1-b
n|+|b
n+2-b
n+1|+…+|b
2n-b
2n-1|使原式得證.
解答:解:(Ⅰ)∵a
2=4,a
3=17,a
4=72,
所以
b1=4.b2=,b3=(Ⅱ)由a
n+2=4a
n+1+a
n
得
=4+即
bn+1=4+所以當(dāng)n≥2時(shí),b
n>4
于是c
1=b
1,b
2=17,c
n=b
nb
n+1=4b
n+1>17(n≥2)
所以S
n=c
1+c
2++c
n≥17n
(Ⅲ)當(dāng)n=1時(shí),結(jié)論
|b2-b1|=<成立
當(dāng)n≥2時(shí),有
|bn+1-bn|=|4+-4-|=||≤|bn-bn-1|≤|bn-1-bn-2|≤|b2-b1|<•(n≥2)所以|b
2n-b
n|≤|b
n+1-b
n|+|b
n+2-b
n+1|+…+|b
2n-b
2n-1|
[()n-1+()n+()2n-2]=•<• (n∈N*) 點(diǎn)評(píng):本題主要考查了數(shù)列的遞推式.?dāng)?shù)列的遞推式與不等式,函數(shù)等知識(shí)綜合考查是近幾年高考的熱點(diǎn),平時(shí)的訓(xùn)練應(yīng)注意知識(shí)的綜合運(yùn)用.