【題目】如圖,在矩形ABCD中,AB=3,BC=2,點(diǎn)M,N分別是邊ABCD上的點(diǎn),且MNBC.若將矩形ABCD沿MN折起使其形成60°的二面角(如圖).

(1)求證:平面CND⊥平面AMND;

(2)求直線MC與平面AMND所成角的正弦值.

【答案】1)見解析;(2.

【解析】

1)轉(zhuǎn)化為證明MN⊥平面CND;(2)過點(diǎn)CCHND與點(diǎn)H,則MHMC在平面AMND內(nèi)的射影,所以∠CMH即直線MC與平面AMND所成的角.

1)∵在矩形ABCD中,MNBC,

MNND,MNNC,

又∵ND,NC是平面CND內(nèi)的兩條相交直線,

MN⊥平面CND,又MN平面AMND

∴平面CND⊥平面AMND.

2)由(1)知∠CND=60°,

AB=3,BC=2,MNBC,

所以CN=1,DN=2,

由余弦定理得

所以∠DCN=90°,

過點(diǎn)CCHND與點(diǎn)H,連接MH

則∠CMH即直線MC與平面AMND所成的角,

所以

故直線MC與平面AMND所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)請(qǐng)作出該函數(shù)在長(zhǎng)度為一個(gè)周期的閉區(qū)間的大致圖象;

(2)試判斷該函數(shù)的奇偶性,并運(yùn)用函數(shù)的奇偶性定義說明理由;

(3)求該函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè).

1)求的單調(diào)區(qū)間;

2)求[-5, ]的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C方程:+=1(a>b>0),M(x0 , y0)是橢圓C上任意一點(diǎn),F(xiàn)(c,0)是橢圓的右焦點(diǎn).
(1)若橢圓的離心率為e,證明|MF|=a﹣ex0
(2)已知不過焦點(diǎn)F的直線l與圓x2+y2=b2相切于點(diǎn)Q,并與橢圓C交于A,B兩點(diǎn),且A,B兩點(diǎn)都在y軸的右側(cè),若a=2,求△ABF的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)將100名高一新生分成水平相同的甲、乙兩個(gè)“平行班”,每班50人.陳老師采用A,B兩種不同的教學(xué)方式分別在甲、乙兩個(gè)班級(jí)進(jìn)行教改實(shí)驗(yàn).為了解教學(xué)效果,期末考試后,陳老師分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),作出莖葉圖如圖.記成績(jī)不低于90分者為“成績(jī)優(yōu)秀”.

(1)在乙班樣本的20個(gè)個(gè)體中,從不低于86分的成績(jī)中隨機(jī)抽取2個(gè),求抽出的2個(gè)均成績(jī)優(yōu)秀的概率;

(2)由以上統(tǒng)計(jì)數(shù)據(jù)作出列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.1的前提下認(rèn)為:“成績(jī)優(yōu)秀”與教學(xué)方式有關(guān).

0.400

0.250

0.150

0.100

0.050

0.025

0.708

1.323

2.072

2.706

3.841

5.024

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校共有15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí))

(1)應(yīng)收集多少位女生樣本數(shù)據(jù)?

(2)根據(jù)這300個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:.估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過4個(gè)小時(shí)的概率.

(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過4個(gè)小時(shí).請(qǐng)完成每周平均體育運(yùn)動(dòng)時(shí)間與性別的列聯(lián)表,并判斷是否有的把握認(rèn)為該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān).

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查患胃病是否與生活規(guī)律有關(guān),在某地對(duì)歲以上的人進(jìn)行了調(diào)查,結(jié)果是:患胃病者生活不規(guī)律的共人,患胃病者生活規(guī)律的共人,未患胃病者生活不規(guī)律的共人,未患胃病者生活規(guī)律的共人.

(1)根據(jù)以上數(shù)據(jù)列出列聯(lián)表;

(2)能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為“歲以上的人患胃病與否和生活規(guī)律有關(guān)系?”

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形所在平面與以為直徑的圓所在平面垂直,中點(diǎn),是圓周上一點(diǎn),且,

1)求異面直線所成角的余弦值;

2)設(shè)點(diǎn)是線段上的點(diǎn),且滿足,若直線平面,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C所對(duì)的邊長(zhǎng),且acosB﹣bcosA= c.
(Ⅰ)求 的值;
(Ⅱ)若A=60°,求 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案