已知雙曲線方程為,

①求該雙曲線的實軸長、虛軸長、離心率、準線方程;

②若拋物線的頂點是該雙曲線的中心,而焦點是其左頂點,求拋物線的方程。

(1) 實軸長,虛軸長 離心率,準線方程為;

(2)拋物線C的方程為


解析:

(1)由

實軸長,虛軸長

離心率,準線方程為

(2)設所求拋物線C的方程為,則

       

        拋物線C的方程為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線方程為x2-
y2
4
=1
,過P(1,0)的直線L與雙曲線只有一個公共點,則L的條數(shù)共有(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線方程為
x2
16
-
y2
9
=1
,過雙曲線的右焦點作直線與雙曲線相交,所得弦長為8的直線有( 。l.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線方程為
x2
9
-
y2
16
=1
,則雙曲線的實軸長為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•德陽二模)已知雙曲線方程為
x2
a2
-
y2
b2
=1
(a>0,b>0),A(-a,0),B(a,0).P為雙曲線上異于A與B的任意一點,直線PA、PB的斜率之積為定值
5
4
,則雙曲線的漸近線方程是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線方程為
x2
a2
-
y2
b2
=1(a>0,b>0)
,右焦點為F,點A(0,b),線段AF交雙曲線于點B,且
AB
=2
BF
,則雙曲線的離心率為( 。

查看答案和解析>>

同步練習冊答案