設數(shù)列{an}的前n項和為Sn,已知ban-2n=(b-1)Sn
(Ⅰ)證明:當b=2時,{an-n•2n-1}是等比數(shù)列;
(Ⅱ)求{an}的通項公式.
分析:(Ⅰ)當b=2時,由題設條件知a
n+1=2a
n+2
n.由此可知a
n+1-(n+1)•2
n=2a
n+2
n-(n+1)•2
n=2(a
n-n•2
n-1),所以{a
n-n•2
n-1}是首項為1,公比為2的等比數(shù)列.
(Ⅱ)當b=2時,由題設條件知a
n=(n+1)2
n-1;當b≠2時,由題意得
an+1-•2n+1=ban+2n-•2n+1=
b(an-•2n),由此能夠導出{a
n}的通項公式.
解答:解:(Ⅰ)當當b=2時,由題意知2a
1-2=a
1,解得a
1=2,
且ba
n-2
n=(b-1)S
nba
n+1-2
n+1=(b-1)S
n+1兩式相減得b(a
n+1-a
n)-2
n=(b-1)a
n+1即a
n+1=ba
n+2
n①
(Ⅰ)當b=2時,由①知a
n+1=2a
n+2
n于是a
n+1-(n+1)•2
n=2a
n+2
n-(n+1)•2
n=2(a
n-n•2
n-1)
又a
1-1•2
0=1≠0,所以{a
n-n•2
n-1}是首項為1,公比為2的等比數(shù)列.
(Ⅱ)當b=2時,由(Ⅰ)知a
n-n•2
n-1=2
n-1,
即a
n=(n+1)2
n-1當b≠2時,由①得
an+1-•2n+1=ban+2n-•2n+1=
ban-•2n=
b(an-•2n)因此
an+1-•2n+1═b(an-•2n)=
•bn即
an+1=•2n+1+•bn所以
an=•2n+•bn-1.
點評:此題重點考查數(shù)列的遞推公式,利用遞推公式求數(shù)列的通項公式,同時考查分類討論思想;推移腳標兩式相減是解決含有Sn的遞推公式的重要手段,使其轉化為不含Sn的遞推公式,從而針對性的解決;在由遞推公式求通項公式是重視首項是否可以吸收是易錯點,同時重視分類討論,做到條理清晰是關鍵.