【題目】已知函數(shù)f(x),
(1)討論函數(shù)f(x)的單調性;
(2)證明:a=1時,f(x)+g(x)﹣(1)lnx>e.
【答案】(1)詳見解析;(2)證明見解析
【解析】
(1)對求導后,再對a分類討論即可得出函數(shù)的單調性.
(2)a=1時,將所證不等式轉化為ex﹣ex+1,令F(x)=ex﹣ex+1,G(x),分別根據(jù)導數(shù)求出的最小值和的最大值即可證明不等式成立.
(1)f(x)alnx,(x∈(0,+∞)).
.
當a≤0時,<0,函數(shù)f(x)在x∈(0,+∞)上單調遞減.
a>0時,由,得,由,得
所以函數(shù)在(0,)上單調遞減,在(,+∞)上單調遞增.
(2)證明:a=1時,要證f(x)+g(x)﹣(1)lnx>e.
即要證:lnx﹣e>0ex﹣ex+1.x∈(0,+∞).
令F(x)=ex﹣ex+1,F′(x)=ex﹣e,
當x∈(0,1)時,F′(x)<0,此時函數(shù)F(x/span>)單調遞減;
當x∈(1,+∞)時,F′(x)>0,此時函數(shù)F(x)單調遞增.
可得x=1時,函數(shù)F(x)取得最小值,F(1)=1.
令G(x),G′(x),
當時,,此時為增函數(shù),
當時。,此時為減函數(shù)
所以x=e時,函數(shù)G(x)取得最大值,G(e)=1.
x=1與x=e不同時取得,因此F(x)>G(x),即ex﹣ex+1.x∈(0,+∞).
故原不等式成立.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2cos2x+ax2.
(1)當a=1時,求f(x)的導函數(shù)在上的零點個數(shù);
(2)若關于x的不等式2cos(2sinx)+a2x2≤af(x)在(﹣∞,+∞)上恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直線是過點的動直線,當與圓相切時,同時也和拋物線相切.
(1)求拋物線的方程;
(2)直線與拋物線交于不同的兩點,與圓交于不同的兩點A、B,面積為,面積為,當時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)則x∈[﹣1,e]時,f(x)的最小值為_____;設g(x)=[f(x)]2﹣f(x)+a若函數(shù)g(x)有6個零點,則實數(shù)a的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“未來肯定是非接觸的,無感支付的方式將成為主流,這有助于降低交互門檻”.云從科技聯(lián)合創(chuàng)始人姚志強告訴南方日報記者.相對于主流支付方式二維碼支付,刷臉支付更加便利,以前出門一部手機解決所有,而現(xiàn)在連手機都不需要了,畢竟,手機支付還需要攜帶手機,打開二維碼也需要時間和手機信號.刷臉支付將會替代手機,成為新的支付方式.某地從大型超市門口隨機抽取50名顧客進行了調查,得到了如表列聯(lián)表:
(1)請將上面的列聯(lián)表補充完整,并判斷是否有的把握認為使用刷臉支付與性別有關?
(2)從參加調查且使用刷臉支付的顧客中隨機抽取2人參加抽獎活動,抽獎活動規(guī)則如下:“一等獎”中獎概率為0.25,獎品為10元購物券張(,且),“二等獎”中獎概率0.25,獎品為10元購物券兩張,“三等獎”中獎概率0.5,獎品為10元購物券一張,每位顧客是否中獎相互獨立,記參與抽獎的兩位顧客中獎購物券金額總和為元,若要使的均值不低于50元,求的最小值.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著新高考改革的不斷深入,高中學生生涯規(guī)劃越來越受到社會的關注.一些高中已經(jīng)開始嘗試開設學生生涯規(guī)劃選修課程,并取得了一定的成果.如表為某高中為了調查學生成績與選修生涯規(guī)劃課程的關系,隨機抽取50名學生的統(tǒng)計數(shù)據(jù).
成績優(yōu)秀 | 成績不夠優(yōu)秀 | 總計 | |
選修生涯規(guī)劃課 | 15 | 10 | 25 |
不選修生涯規(guī)劃課 | 6 | 19 | 25 |
總計 | 21 | 29 | 50 |
(1)根據(jù)列聯(lián)表運用獨立性檢驗的思想方法能否有99%的把握認為“學生的成績是否優(yōu)秀與選修生涯規(guī)劃課有關”,并說明理由;
(2)現(xiàn)用分層抽樣的方法在選修生涯規(guī)劃課的成績優(yōu)秀和成績不夠優(yōu)秀的學生中隨機抽取5名學生作為代表,從5名學生代表中再任選2名學生繼續(xù)調查,求這2名學生成績至少有1人優(yōu)秀的概率.
參考附表:
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
參考公式,其中n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),已知方程(為常數(shù))在上恰有三個根,分別為,下述四個結論:
①當時,的取值范圍是;
②當時,在上恰有2個極小值點和1個極大值點;
③當時,在上單調遞增;
④當時,的取值范圍為,且
其中正確的結論個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】生男生女都一樣,女兒也是傳后人.由于某些地區(qū)仍然存在封建傳統(tǒng)思想,頭胎的男女情況可能會影響生二孩的意愿,現(xiàn)隨機抽取某地200戶家庭進行調查統(tǒng)計.這200戶家庭中,頭胎為女孩的頻率為0.5,生二孩的頻率為0.525,其中頭胎生女孩且生二孩的家庭數(shù)為60.
(1)完成下列列聯(lián)表,并判斷能否有95%的把握認為是否生二孩與頭胎的男女情況有關;
生二孩 | 不生二孩 | 合計 | |
頭胎為女孩 | 60 | ||
頭胎為男孩 | |||
合計 | 200 |
(2)在抽取的200戶家庭的樣本中,按照分層抽樣的方法在生二孩的家庭中抽取了7戶,進一步了解情況,在抽取的7戶中再隨機抽取4戶,求抽到的頭胎是女孩的家庭戶數(shù)的分布列及數(shù)學期望.
附:
0.15 | 0.05 | 0.01 | 0.001 | |
2.072 | 3.841 | 6.635 | 10.828 |
(其中).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com