【題目】某公司計劃在甲、乙兩個電視臺做總時間不超過300分鐘的廣告,廣告費用不超過9萬元,甲、乙電視臺的廣告費標(biāo)準分別是500/分鐘和200元分鐘,假設(shè)甲、乙兩個電視臺為該公司做的廣告能給公司帶來的收益分別為0.4萬元/分鐘和0.2萬元分鐘,那么該公司合理分配在甲、乙兩個電視臺的廣告時間,能使公司獲得最大的收益是()萬元

A.72B.80C.84D.90

【答案】B

【解析】

設(shè)公司在甲、乙兩個電視臺的廣告時間分別為分鐘,總收益為元,根據(jù)題意得到約束條件,目標(biāo)函數(shù),平行目標(biāo)函數(shù)圖象找到在縱軸上截距最大時所經(jīng)過的點,把點的坐標(biāo)代入目標(biāo)函數(shù)中即可.

設(shè)公司在甲、乙兩個電視臺的廣告時間分別為分鐘,總收益為元,則由題意可得可行解域:,目標(biāo)函數(shù)為

可行解域化簡得,,在平面直角坐標(biāo)系內(nèi),畫出可行解域,如下圖所示:

作直線,即,平行移動直線,當(dāng)直線點時,目標(biāo)函數(shù)取得最大值,聯(lián)立,解得,所以點坐標(biāo)為

,因此目標(biāo)函數(shù)最大值為,故本題選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系xOy中,過點P(﹣1,﹣2)的直線l的參數(shù)方程為 (t為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsinθtanθ=2a(a>0),直線l與曲線C相交于不同的兩點M、N.
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若|PM|=|MN|,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=ex﹣ex﹣x.
(1)求f(x)的單調(diào)區(qū)間;
(2)已知g(x)=x2f(x)+(x+1)[f(x)+(1﹣a)x]+(1﹣a)x3 . 若對所有x≥0,都有g(shù)(x)≥0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足a1=1,anan+1=2Sn , 設(shè)bn= ,若存在正整數(shù)p,q(p<q),使得b1 , bp , bq成等差數(shù)列,則p+q=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所發(fā)現(xiàn),一中作物的年收獲量y(單位:kg)與它”相近“作物的株數(shù)x具有線性相關(guān)關(guān)系(所謂兩株作物”相近“是指它們的直線距離不超過1m),并分別記錄了相近作物的株數(shù)為1,2,3,5,6,7時,該作物的年收獲量的相關(guān)數(shù)據(jù)如下:

X

1

2

3

5

6

7

y

60

55

53

46

45

41


(Ⅰ)求該作物的年收獲量y關(guān)于它”相近“作物的株數(shù)x的線性回歸方程;
(Ⅱ)農(nóng)科所在如圖所示的正方形地塊的每個格點(指縱、橫直線的交叉點)處都種了一株該作物,其中每一個小正方形的面積為1,若在所種作物中隨機選取一株,求它的年收獲量的分布列與數(shù)學(xué)期望.(注:年收獲量以線性回歸方程計算所得數(shù)據(jù)為依據(jù))
附:對于一組數(shù)據(jù)(x1 , y1),(x2 , y2),…,(xn , yn),其回歸直線y=a+bx的斜率和截距的最小二乘估計分別為 = = =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

直線 的參數(shù)方程為 為參數(shù)),以坐標(biāo)原點 為極點, 軸正半軸為極軸建立極坐標(biāo)系,曲線 的極坐標(biāo)方程為 ,直線 與曲線 交于不同的兩點.

(1)求實數(shù) 的取值范圍;

(2)已知 ,設(shè)點 ,若 , 成等比數(shù)列,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】寫出下列命題的否定,并判斷其真假:

(1)任何有理數(shù)都是實數(shù);

(2)存在一個實數(shù),能使成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)在中,內(nèi)角對邊的邊長分別是,已知,.()若的面積等于,求;)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一兒童游樂場擬建造一個“蛋筒”型游樂設(shè)施,其軸截面如圖中實線所示.ABCD是等腰梯形,AB=20米,∠CBF=α(F在AB的延長線上,α為銳角).圓E與AD,BC都相切,且其半徑長為100﹣80sinα米.EO是垂直于AB的一個立柱,則當(dāng)sinα的值設(shè)計為多少時,立柱EO最矮?

查看答案和解析>>

同步練習(xí)冊答案