【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若有兩個(gè)極值點(diǎn),當(dāng)時(shí),求的最大值.

【答案】1)當(dāng)時(shí),上單調(diào)遞增;當(dāng)時(shí),,上單調(diào)遞增;在上單調(diào)遞減;

2

【解析】

1)先對(duì)函數(shù)求導(dǎo),分別討論,即可得出結(jié)果;

2)先由(1)得到,,對(duì)化簡(jiǎn)整理,再令,得到,根據(jù)(1)和求出的范圍,再令,用導(dǎo)數(shù)的方法求其最大值,即可得出結(jié)果.

1)由;

因?yàn)?/span>,所以;

因此,當(dāng)時(shí),上恒成立,所以上單調(diào)遞增;

當(dāng)時(shí),由,解得;由;

所以,上單調(diào)遞增;在上單調(diào)遞減;

綜上,當(dāng)時(shí),上單調(diào)遞增;

當(dāng)時(shí),,上單調(diào)遞增;在上單調(diào)遞減;

2)若有兩個(gè)極值點(diǎn)

由(1)可得, 是方程的兩不等實(shí)根,

所以,

因此

,

,則;

由(1)可知,

當(dāng)時(shí),

所以,

,

上恒成立;

所以上單調(diào)遞減,

.

的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某手機(jī)商城2018年華為、蘋(píng)果、三星三種品牌的手機(jī)各季度銷(xiāo)量的百分比堆積圖(如:第三季度華為銷(xiāo)量約占50%,蘋(píng)果銷(xiāo)量約占20%,三星銷(xiāo)量約占30%).根據(jù)該圖,以下結(jié)論中一定正確的是(  )

A.華為的全年銷(xiāo)量最大B.蘋(píng)果第二季度的銷(xiāo)量大于第三季度的銷(xiāo)量

C.華為銷(xiāo)量最大的是第四季度D.三星銷(xiāo)量最小的是第四季度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率為且右焦點(diǎn)到右準(zhǔn)線的距離為.

1)求橢圓的標(biāo)準(zhǔn)方程:

2)過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),與交于點(diǎn)是弦的中點(diǎn),直線交于點(diǎn).的面積之比是,求的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=x22acoskπlnxkN*,aRa0).

1)討論函數(shù)fx)的單調(diào)性;

2)若k2018,關(guān)于x的方程fx)=2ax有唯一解,求a的值;

3)當(dāng)k2019時(shí),證明:對(duì)一切x∈(0,+∞),都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的左、右焦點(diǎn)分別為,圓與雙曲線在第一象限內(nèi)的交點(diǎn)為M,若.則該雙曲線的離心率為

A. 2B. 3C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)南北朝時(shí)期數(shù)學(xué)家、天文學(xué)家——祖暅,提出了著名的祖暅原理:“冪勢(shì)既同,則積不容異也”.“冪”是截面積,“勢(shì)”是幾何體的高,意思是兩等高幾何體,若在每一等高處的兩截面面積都相等,則兩幾何體體積相等.已知某不規(guī)則幾何體與如圖三視圖所對(duì)應(yīng)的幾何體滿足祖暅原理,則該不規(guī)則幾何體的體積為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}中,a58,a1023

1)令,證明:數(shù)列{bn}是等比數(shù)列;

2)求數(shù)列{nbn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】普通高中國(guó)家助學(xué)金,用于資助家庭困難的在校高中生.在本地,助學(xué)金分一等和二等兩類(lèi),一等助學(xué)金每學(xué)期1250元,二等助學(xué)金每學(xué)期750元,并規(guī)定:屬于農(nóng)村建檔立卡戶的學(xué)生評(píng)一等助學(xué)金.某班有10名獲得助學(xué)金的貧困學(xué)生,其中有3名屬于農(nóng)村建檔立卡戶,這10名學(xué)生中有4名獲一等助學(xué)金,另6名獲二等助學(xué)金.現(xiàn)從這10名學(xué)生中任選3名參加座談會(huì).

)若事件A表示“選出的3名同學(xué)既有建檔立卡戶學(xué)生,又有非建檔立卡戶學(xué)生”,求A的概率;

)設(shè)X為選出的3名同學(xué)一學(xué)期獲助學(xué)金的總金額,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解學(xué)生課外使用手機(jī)的情況,某研究學(xué)習(xí)小組為研究學(xué)校學(xué)生一個(gè)月使用手機(jī)的總時(shí)間,收集了500名學(xué)生201912月課余使用手機(jī)的總時(shí)間(單位:小時(shí))的數(shù)據(jù).從中隨機(jī)抽取了50名學(xué)生,將數(shù)據(jù)進(jìn)行整理,得到如圖所示的頻率分布直方圖.已知這50人中,恰有2名女生的課余使用手機(jī)總時(shí)間在區(qū)間,現(xiàn)在從課余使用手總時(shí)間在樣本對(duì)應(yīng)的學(xué)生中隨機(jī)抽取2人,則至少抽到1名女生的概率為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案