已知函數(shù),若存在正實(shí)數(shù),使得方程在區(qū)間(2,+)上有兩個(gè)根,其中,則的取值范圍是

A.     B.           C.          D.

 

【答案】

B

【解析】

試題分析:依題意,,且,又(因a, b不等所以不取等號(hào)),所以,所以,故選B.

考點(diǎn):基本不等式 方程的根

點(diǎn)評(píng):本題考查方程的根及基本不等式求最值,解題的關(guān)鍵是能根據(jù)已知條件求出,屬難題.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-(-1)k•2lnx(k∈N*).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)k是偶數(shù)時(shí),正項(xiàng)數(shù)列{an}滿足a1=1,f′(an)=
a
2
n+1
-3
an

①求數(shù)列{an}的通項(xiàng)公式;
②若bn=
2n
a
2
n
a
2
n+1
,記Sn=b1+b2+b3+…+bn,求證:Sn<1.
(3)當(dāng)k是奇數(shù)時(shí),是否存在實(shí)數(shù)b,使得方程f(x)=
3
2
x2+x+b
在區(qū)間(0,2]上恰有兩個(gè)相異實(shí)根?若存在,求出b的范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3+3bx2-(a+3b)x+1(ab≠0)在x=1處取得極值,在x=2處的切線平行于向量
OP
=(b+5,5a).
(1)求a,b的值,并求f(x)的單調(diào)區(qū)間;
(2)是否存在正整數(shù)m,使得方程f(x)=6x-
16
3
在區(qū)間(m,m+1)內(nèi)有且只有兩個(gè)不等實(shí)根?若存在,求出m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
e2x-e(ex+e-x)-x

(1)求函數(shù)f(x)的極值.(2)是否存在正整數(shù)a,使得方程f(x)=
f(-a)+f(a)
2
在區(qū)間[-a,a]上有三個(gè)不同的實(shí)根,若存在,試確定a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年廣東省汕頭市高二下學(xué)期期末考試文科數(shù)學(xué) 題型:解答題


已知函數(shù)x=1處取得極值,在x=2處的切線平行于向量
(1)求a,b的值,并求的單調(diào)區(qū)間;
(2)是否存在正整數(shù)m,使得方程在區(qū)間(m,m+1)內(nèi)有且只有兩個(gè)不等實(shí)根?若存在,求出m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省汕頭市高二(下)質(zhì)量檢測(cè)數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)f(x)=ax3+3bx2-(a+3b)x+1(ab≠0)在x=1處取得極值,在x=2處的切線平行于向量=(b+5,5a).
(1)求a,b的值,并求f(x)的單調(diào)區(qū)間;
(2)是否存在正整數(shù)m,使得方程在區(qū)間(m,m+1)內(nèi)有且只有兩個(gè)不等實(shí)根?若存在,求出m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案