分析 由曲線C的極坐標(biāo)方程,求出曲線C的直角坐標(biāo)方程為$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}=1$,從而得到$\left\{\begin{array}{l}{x=3cosα}\\{y=2sinα}\end{array}\right.,0≤α<2π$,由此能求出3x+4y的最大值.
解答 解:∵曲線C的極坐標(biāo)方程為${ρ^2}=\frac{36}{{4{{cos}^2}θ+9{{sin}^2}θ}}$,
∴4ρ2+5ρ2sin2θ=36,
∴4x2+9y2=36,即$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}=1$,
∵P(x,y)是曲線C上的一個動點,∴$\left\{\begin{array}{l}{x=3cosα}\\{y=2sinα}\end{array}\right.,0≤α<2π$,
∴3x+4y=9cosα+8sinα=$\sqrt{145}$sin(α+γ),其中tanγ=$\frac{9}{8}$.
∴3x+4y的最大值為$\sqrt{145}$.
點評 本題考查代數(shù)式的最大值的求法,是中檔題,解題時要認(rèn)真審題,注意極坐標(biāo)方程、直角坐標(biāo)方程、參數(shù)方程的性質(zhì)及互化公式的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 22 | B. | 20 | C. | 17 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+$\frac{\sqrt{3}+3π}{2}$ | B. | $\frac{1+\sqrt{3}+π}{2}$ | C. | $\frac{1+\sqrt{3}+3π}{2}$ | D. | $\frac{3+\sqrt{3}+3π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com