【題目】對于給定數(shù)列,如果存在實常數(shù)使得對于任意都成立,我們稱數(shù)列M類數(shù)列

1)若,數(shù)列是否為M類數(shù)列?若是,指出它對應的實常數(shù);若不是,請說明理由;

2)證明:若數(shù)列M類數(shù)列,則數(shù)列也是M類數(shù)列

【答案】1)數(shù)列M類數(shù)列,對應的實常數(shù)分別為2,02)見解析

【解析】

1)由,可得,可得數(shù)列M類數(shù)列,對應的實常數(shù)分別為1,2.同理數(shù)列M類數(shù)列.(2)利用M類數(shù)列的定義即可證明;

1,

故數(shù)列M類數(shù)列,對應的實常數(shù)分別為12

因為,則有

故數(shù)列M類數(shù)列,對應的實常數(shù)分別為2,0

2)若數(shù)列M類數(shù)列,則存在實常數(shù),使得對于任意都成立,且有對于任意都成立,因此對于任意都成立.故數(shù)列也是M類數(shù)列

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓中心在坐標原點,是它的兩個頂點,直線AB相交于點D,與橢圓相交于E、F兩點.

)若,求的值;

)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市調(diào)研考試后,某校對甲、乙兩個文科班的數(shù)學考試成績進行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為.

優(yōu)秀

非優(yōu)秀

合計

甲班

10

乙班

30

合計

110

1)請完成上面的列聯(lián)表;

2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認為“成績與班級有關系”;

參考公式與臨界值表:.

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知圓圓心為,過點且斜率為的直線與圓相交于不同的兩點、

)求的取值范圍;

)是否存在常數(shù),使得向量共線?如果存在,求值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列是各項均為正數(shù)的等比數(shù)列,設

1)數(shù)列是否為等比數(shù)列?證明你的結論;

2)設數(shù)列的前項和分別為.若,求數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)設,證明:函數(shù)有兩個零點,且

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足:,,其中為實數(shù),為正整數(shù).

)證明:對任意的實數(shù),數(shù)列不是等比數(shù)列;

)證明:當時,數(shù)列是等比數(shù)列;

)設為數(shù)列的前項和,是否存在實數(shù),使得對任意正整數(shù),都有?若存在,求的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】考察下列無窮數(shù)列,判斷是否有極限,若有,求出極限;若沒有,請說明理由.

1

2

3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩個不同的單位向量之間滿足關系:,其中

1)若,求的解析式;

2能否和垂直?能否和平行?若不能,則說明理由;若能,則求出對應的k值;

3)求夾角的最大值.

查看答案和解析>>

同步練習冊答案