求證:cos(sinx)sin(cosx)

 

答案:
解析:

證法一:設(shè)y1=cos(sinx),y2=sin(cosx),其最小正周期為2π.在x∈[0,2π]討論.

  而sin(cosx)=sin[cos(π+y)]=sin[-cosy]=-sin(cosy)<0,∴cos(sinx)>sin(cosx).

  

  ∴沿用①的結(jié)論,cos(siny)>sin(cosy),又知y=2π-x,

  ∴cos(siny)=cos[sin(2π-x)]=cos(sinx),sin(cosy)=sin[cos(2π-y)]=sin(cosx),

  ∴cos(sinx)>sin(cosx).

 

以上證法比較冗長(zhǎng),難免掛一漏萬(wàn), 請(qǐng)看下面證法:

證法二:

  欲證:cos(sinx)>sin(cosx)

  只證:cos(cosx)>sin(sinx)

  [證]:cos(cosx)-sin(sinx)

  

  

  

  即cos(cosx)-sin(sinx)>0,∴cos(cosx)>sin(sinx)

  

  

<

         即cos(sinx)>sin(cosx).

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|sinx|的圖象與直線y=kx(k>0)有且僅有三個(gè)交點(diǎn),交點(diǎn)的橫坐標(biāo)的最大值為α,求證:
cosα
sinα+sin3α
=
1+α2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求證:
1+sinα+cosα+2sinαcosα1+sinα+cosα
=sinα+cosα

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)化簡(jiǎn):
sin(2π-α)sin(π+α)cos(-π-α)
sin(3π-α)cos(π-α)

(2)求證:
cosx
1-sinx
=
1+sinx
cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|sinx|.
(1)若g(x)=ax-f(x)≥0對(duì)任意x∈[0,+∞)恒成立,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)=|sinx|的圖象與直線y=kx(k>0)有且僅有三個(gè)公共點(diǎn),且公共點(diǎn)的橫坐標(biāo)的最大值為α,求證:
cosα
sinα+sin3α
=
1+α2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題包括(1)、(2)、(3)、(4)四小題,請(qǐng)選定其中兩題,并在答題卡指定區(qū)域內(nèi)答,
若多做,則按作答的前兩題評(píng)分.解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.
(1)、選修4-1:幾何證明選講
如圖,∠PAQ是直角,圓O與AP相切于點(diǎn)T,與AQ相交于兩點(diǎn)B,C.求證:BT平分∠OBA
(2)選修4-2:矩陣與變換(本小題滿分10分)
若點(diǎn)A(2,2)在矩陣M=
cosα-sinα
sinαcosα
對(duì)應(yīng)變換的作用下得到的點(diǎn)為B(-2,2),求矩陣M的逆矩陣
(3)選修4-2:矩陣與變換(本小題滿分10分)
在極坐標(biāo)系中,A為曲線ρ2+2ρcosθ-3=0上的動(dòng)點(diǎn),B為直線ρcosθ+ρsinθ-7=0上的動(dòng)點(diǎn),求AB的最小值.
(4)選修4-5:不等式選講(本小題滿分10分)
已知a1,a2…an都是正數(shù),且a1•a2…an=1,求證:(2+a1)(2+a2)…(2+an)≥3n

查看答案和解析>>

同步練習(xí)冊(cè)答案